
CS 5154: Software Testing

Applying Graph Based Coverage
to Source Code

Owolabi Legunsen

Implementing Graph-based MDTD

• Develop a model of the software as a graph

• Require tests to visit/tour sets of nodes, edges, or sub-paths

• Choose inputs that satisfy the test requirements

• Implement and automate tests based on the inputs chosen

2

Relating “Abstract Design” to Source Code

• Test Graph : usually the control flow graph (CFG)

• Nodes: statements or statement sequences (basic blocks)

• Edges : transfers of control

• Loops : structures such as for loops, while loops, etc

3

Relating Graph Coverage Criteria to Source Code

• Node coverage : Execute every statement (i.e., statement coverage)

• Edge coverage : Execute every branch (i.e., branch coverage)

• Edge-pair coverage : ??

• Prime-path Coverage : Execute every statement, branch, loop

4

An essential concept for creating CFGs

• Basic Block : A sequence of statements such that if the first
statement is executed, all statements in the sequence will be
executed (no branches)

• Implication: Put all statements in a basic block in one CFG node
• We will see one exception to the rule

5

Rules for creating CFG from Java source code

• We show one rule/template for commonly used Java features

• There are other sets of rules that can be used

• Differences in the sets of rules are usually not so important for testing

6

Rule 1: if-then-else

7

if (x < y)
{

y = 0;
x = x + 1;

}
else
{

x = y;
}

4

1

2 3

x >= yx < y

x = y
y = 0

x = x + 1

Rule 2: if-then

8

if (x < y)
{

y = 0;
x = x + 1;

}

3

1

2 x >= y
x < y

y = 0
x = x + 1

Rule 3: if-with-return

9

if (x < y)
{

return;
}
print (x);
return;

3

1

2 x >= y

x < y

return

print(x)
return

Rule 4: while

10

x = 0;
while (x < y)
{

y = f (x, y);
x = x + 1;

}
return x;

1 x = 0

43

y =f(x,y)
x = x + 1

return x

x >= yx < y

2
decision node

Rule 5: do-while

11

x = 0;
do
{

y = f (x, y);
x = x + 1;

} while (x < y);
return y;

1x = 0

3

2
x >= y

x < y

y = f (x, y)
x = x+1

return y

Rule 6: for

12

for (x = 0; x < y; x++)
{

y = f (x, y);
}
return x;

1

x = x + 1

2

3 5

x >= yx < y

y = f(x, y)

4

x = 0

implicitly
initializes

loop

implicitly increments loop

return x

Rule 7: break and continue

13

x = 0;
while (x < y) {

y = f (x, y);
if (y == 0) {

break;
} else if (y < 0) {

y = y*2;
continue;

}
x = x + 1;

}
return y;

1 x = 0

8

3

x = x + 1

break

y < 0

2

4

5

6

7

y=f(x,y)
y == 0

y = y*2
continue

return y

y != 0

x >= y

Rule 8: switch

14

read (c) ;
switch (c)
{

case ‘N’:
z = 25;

case ‘Y’:
x = 50;
break;

default:
x = 0;
break;

}
print (x);

5

1 read (c);

c == ‘N’

x = 0;
break;

2 43
c == ‘Y’

default

x = 50;
break;

z = 25;

print (x);

Cases without
breaks fall through
to the next case

Example 2: branch coverage criterion

• What elements of software should tests exercise?

• What rule do we want to impose on the tests?

• How do we check if the rule is satisfied?

16

Rule 9: exceptions

try {
s = br.readLine();
if (s.length() > 96)

throw new Exception (“too long”);
if (s.length() == 0)

throw new Exception (“too short”);
} (catch IOException e) {

e.printStackTrace();
} (catch Exception e) {

e.getMessage();
}
return (s);

1 s = br.readLine()

8

2 3

4 5

6

7

IOException

e.printStackTrace() length > 96
length <= 96

return (s)

throw

length == 0
length != 0

throw

e.getMessage()

Rule 10: putting it all together

• Real programs will require using more than one of these rules

• Real programs can get very large

• Real programs may require features that we do not cover
• Recursion
• Inter-procedural calls

19

Implementing Graph-based MDTD

• Develop a model of the software as a graph

• Require tests to visit/tour sets of nodes, edges, or sub-paths

• Choose inputs that satisfy the test requirements

• Implement and automate tests based on the inputs chosen

20

Apply Graph-based MDTD to indexOf (use PPC)

21

/** Return first index of Node n in path, or
* -1 if n is not present in path */

public int indexOf (Node n, List<Node> path){
for (int i=0; i < path.size(); i++){

if (path.get(i).equals(n))
return i;

}
return -1;

}

Summary

22

• Basic definition and terminology

• Graph Coverage Criteria and their relationships

• Obtaining graphs from source code

• You may apply Graph coverage on the next homework

Next

• Logic-based testing

23

