
CS 5154

Testing Concepts (continued)

Owolabi Legunsen

The following are modified versions of the publicly-available slides for Chapters 1
and 2 in the Ammann and Offutt Book, “Introduction to Software Testing”

(http://www.cs.gmu.edu/~offutt/softwaretest)

Outline for today’s class
� Fundamental testing terminology

� The costs of insufficient, non-existent, or late testing

� The goals of a software tester

� Foundations of software testing

� Levels of software testing

� Types of testing activities

� Model-Driven Test Design
45

Coverage Criteria
� Exhaustive testing of even small programs requires too

many inputs

– private static double computeAverage (int A, int B, int C)

– On 32-bit machines: A, B, C have over 4 billion possible values

– Over 80 octillion possible tests!!

– Input space might as well be infinite

� Testers search a huge input space

– Trying to find the fewest inputs that will find the most problems

� Coverage criteria give structured, practical ways to search
the input space

– Search the input space thoroughly

– Not much overlap in the tests

Introduction to Software Testing, Edition 2 (Ch 2) © Ammann & Offutt 46

Advantages of Coverage Criteria
� Maximize the “bang for the buck”

� Provide traceability from software artifacts to tests

– Source, requirements, design models, …

� Make regression testing easier

� Give testers a “stopping rule” … when testing is finished

� Can be well supported with powerful tools

Introduction to Software Testing, Edition 2 (Ch 2) © Ammann & Offutt 47

There are many Coverage Criteria

� Testing researchers have defined dozens of criteria

� One view: they are all just a few criteria on four types of
software structures:

– Input Domains

– Graphs

– Logic Expressions

– Syntax Descriptions

� This class: We will learn about test design using these
four structures

Introduction to Software Testing, Edition 2 (Ch 2) © Ammann & Offutt 48

Model-Driven Test Design

� Test Design is the process of designing input values that
will effectively test software

� Test design is one of several activities for testing software

– Most mathematical

– Most technically challenging

Introduction to Software Testing, Edition 2 (Ch 2) © Ammann & Offutt 49

Using MDTD in Practice

� First do the math or analysis to obtain test requirements

� Then

– Find input values that satisfy the test requirements

– Automate the tests

– Run the tests

– Evaluate the tests

Introduction to Software Testing, Edition 2 (Ch 2) © Ammann & Offutt 50

MDTD: Small Illustrative Example

Introduction to Software Testing, Edition 2 (Ch 2) © Ammann & Offutt 51

Software Artifact : Java Method
/**

* Return index of node n at the
* first position it appears,
* -1 if it is not present

*/
public int indexOf (Node n)
{

for (int i=0; i < path.size(); i++)
if (path.get(i).equals(n))

return i;
return -1;

}
45

3

2

1 i = 0

i < path.size()

if

return ireturn -1

Control Flow Graph

Example (2)

Introduction to Software Testing, Edition 2 (Ch 2) © Ammann & Offutt 52

45

3

2

1

Graph
Abstract version

Edges
1 2
2 3
3 2
3 4
2 5
Initial Node: 1
Final Nodes: 4, 5

6 requirements for
Edge-Pair Coverage
1. [1, 2, 3]
2. [1, 2, 5]
3. [2, 3, 4]
4. [2, 3, 2]
5. [3, 2, 3]
6. [3, 2, 5]

Test Paths
[1, 2, 5]
[1, 2, 3, 2, 5]
[1, 2, 3, 2, 3, 4]

Find values …

In-Class Exercise (8 minutes)
� https://docs.google.com/document/d/1e5YgQ5WSXseIfgl1

aUpjCbULaGgIAZm4y5KfnJ7v43c/edit

� Tasks:

– meet one another

– Complete the task

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 53

Outline for today’s class
� Fundamental testing terminology

� The costs of insufficient, non-existent, or late testing

� The goals of a software tester

� Foundations of software testing

� Levels of software testing

� Types of testing activities

� Model-Driven Test Design
54

