
CS 5154

Testing Concepts

Owolabi Legunsen

The following are modified versions of the publicly-available slides for Chapters 1
and 2 in the Ammann and Offutt Book, “Introduction to Software Testing”

(http://www.cs.gmu.edu/~offutt/softwaretest)

Outline for today’s class
� Fundamental testing terminology

� The costs of insufficient, non-existent, or late testing

� The goals of a software tester

� Foundations of software testing

� Levels of software testing

� Types of testing activities

� Model-Driven Test Design
Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 2

Outline for today’s class
� Fundamental testing terminology

� The costs of insufficient, non-existent, or late testing

� The goals of a software tester

� Foundations of software testing

� Levels of software testing

� Types of testing activities

� Model-Driven Test Design
3

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 4

� Software Fault : A static defect in the software

� Software Failure : External, incorrect behavior with
respect to the requirements or other description of the
expected behavior

� Software Error : An incorrect internal state that is the
manifestation of some fault

Software Faults, Errors & Failures

A Concrete Example

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 5

public static int numZero (int [] arr)
{ // Effects: If arr is null throw NullPointerException

// else return the number of occurrences of 0 in arr
int count = 0;
for (int i = 1; i < arr.length; i++)
{

if (arr [i] == 0)
{

count++;
}

}
return count;

}

Fault: Should start
searching at 0, not 1

Test 1
[2, 7, 0]

Test 2
[0, 2, 7]

Error: i is 1, not 0, on
the first iteration
Failure: none

Error: i is 1, not 0
Error propagates to the variable count
Failure: count is 0 at the return statement

Expected: 1
Actual: 1

Expected: 1
Actual: 0

The Term, “Bug”
� Bug is used informally

� Sometimes speakers mean fault, sometimes error, sometimes failure
… often the speaker doesn’t know what it means !

� This class: when needed, we will use the more precise terminology

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 6

“It has been just so in all of my inventions. The
first step is an intuition, and comes with a burst,
then difficulties arise—this thing gives out and
[it is] then that 'Bugs'—as such little faults and
difficulties are called—show themselves and
months of intense watching, study and labor are
requisite. . .” – Thomas Edison

“an analyzing process
must equally have been
performed in order to
furnish the Analytical
Engine with the necessary
operative data; and that
herein may also lie a
possible source of error.
Granted that the actual
mechanism is unerring in
its processes, the cards
may give it wrong orders.
” – Ada, Countess Lovelace
(notes on Babbage’s
Analytical Engine)

Outline for today’s class
� Fundamental testing terminology

� The costs of insufficient, non-existent, or late testing

� The goals of a software tester

� Foundations of software testing

� Levels of software testing

� Types of testing activities

� Model-Driven Test Design
7

Spectacular Software Failures

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 8

� Intel’s Pentium FDIV fault : Public relations
nightmare

� THERAC-25 radiation machine : Poor testing of
safety-critical software can cost lives : 3 patients
were killed

Mars Polar
Lander crash
site?

THERAC-25 design

Ariane 5:
exception-handling
bug : forced self
destruct on maiden
flight (64-bit to 16-bit
conversion: about
370 million $ lost)

We need our software to be dependable
Testing is one way to assess dependability

� NASA’s Mars lander: September 1999, crashed
due to a units integration fault

� Ariane 5 explosion : Millions of $$

Northeast Blackout of 2003

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 9

Affected 10 million
people in Ontario,

Canada

Affected 40 million
people in 8 US

states

Financial losses of

$6 Billion USD

508 generating
units and 256

power plants shut
down

The alarm system in the energy management system failed
due to a software error and operators were not informed of

the power overload in the system

More recent software Failures

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 10

• Healthcare website : Crashed repeatedly
on launch—never load tested

Software testers try to find faults before
the faults find users

• Boeing A220 : Engines failed after software
update allowed excessive vibrations

• Toyota brakes : Dozens dead, thousands of crashes

• Boeing 737 Max : Crashed due to overly
aggressive software flight overrides (MCAS)

The True Cost of Software Failure

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 11

Fail watch analyzed news articles for 2016
• 606 reported software failures
• Impacted half the world’s population
• Cost a combined $1.7 trillion US dollars

Poor software is a significant drag
on the world’s economy

Not to mention frustrating

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 12

Cost of Not Testing

� Testing is the most time consuming and
expensive part of software development

� Not testing is even more expensive

� If we have too little testing effort early, the cost
of testing increases

� Planning for testing after development is
prohibitively expensive

Poor Program Managers might say:
“Testing is too expensive.”

Cost of Late Testing

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 13

60

50

40

30

20

10

0

Fault origin (%)

Fault detection (%)

Unit cost (X)

Software Engineering Institute; Carnegie Mellon University; Handbook CMU/SEI-96-HB-002

Assume $1000 unit cost, per fault, 100 faults

Implications for Software Testing

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 14

Software testing is getting more important

What are we trying to do when we test ?

What are our goals ?

Outline for today’s class
� Fundamental testing terminology

� The costs of insufficient, non-existent, or late testing

� The goals of a software tester

� Foundations of software testing

� Levels of software testing

� Types of testing activities

� Model-Driven Test Design
15

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 16

Testing Goals Based on Test
Process Maturity

 Level 0 : There’s no difference between testing & debugging

 Level 1 : The purpose of testing is to show correctness

 Level 2 : The purpose of testing is to show that the
software doesn’t work

 Level 3 : The purpose of testing is not to prove anything
specific, but to reduce the risk of using the software

 Level 4 : Testing is a mental discipline that helps all IT
professionals develop higher quality software

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 17

Level 0 Thinking

� Testing is the same as debugging

� Does not distinguish between incorrect behavior
and mistakes in the program

� Does not help develop software that is reliable or
safe

This level is usually taught in undergraduate CS majors

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 18

Level 1 Thinking

� Purpose is to show correctness

� Correctness is impossible to achieve

� What do we know if no failures?
– Good software or bad tests?

� Software engineers have no:
– Strict goal

– Real stopping rule

– Formal test technique

– Test managers are powerless

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 19

Level 2 Thinking
� Purpose is to show failures

� Looking for failures can be a negative activity

� It can put testers and developers into an
adversarial relationship

� What if there are no failures?

This describes many software organizations.

How can we move to a team approach ??

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 20

Level 3 Thinking
� Testing can only show the presence of failures

� Whenever we use software, we incur some risk

� Risk may be small and consequences unimportant

� Risk may be great and consequences catastrophic

� Testers and developers cooperate to reduce risk

This describes relatively few “enlightened” software
organizations

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 21

Level 4 Thinking

A mental discipline that increases quality

� Testing is only one way to increase quality

� Test engineers can become technical leaders of the project

� Primary responsibility to measure and improve software
quality

� Their expertise should help the developers

This is the way “traditional” engineering works

What testing level are you at?

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 22

We hope to teach you to become
“change agents” in your workplace …

Advocates for level 4 thinking

In-class activity: Poll

What should testers aim for ?

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 23

A tester should aim to eliminate
faults as early as possible

• Improve quality

• Reduce cost of finding bugs

• Preserve customer satisfaction

Outline for today’s class
� Fundamental testing terminology

� The costs of insufficient, non-existent, or late testing

� The goals of a software tester

� Foundations of software testing

� Levels of software testing

� Types of testing activities

� Model-Driven Test Design
24

A key Software Testing Limitation

Introduction to Software Testing, Edition 2 (Ch 2) © Ammann & Offutt 25

Testing can only show the presence
of failures

Not their absence

Introduction to Software Testing, Edition 2 (Ch 2) © Ammann & Offutt 26

Moving beyond Level 0:
Testing vs. Debugging

� Testing : Evaluating software by observing its execution

� Test Failure : Execution of a test that results in a
software failure

� Debugging : The process of finding a fault given a failure

Not all inputs will “trigger” a fault
into causing a failure

Introduction to Software Testing, Edition 2 (Ch 2) © Ammann & Offutt 27

Four conditions necessary for a
failure to be observed

1. Reachability : The location or locations in the program
that contain the fault must be reached

2. Infection : The state of the program must be incorrect

3. Propagation : The infected state must cause some
output or final state of the program to be incorrect

4. Reveal : The tester must observe part of the incorrect
portion of the program state

RIPR Model

• Reachability

• Infection

• Propagation

• Revealability

Test

Fault

Incorrect
Program

State Test
Oracles

Final Program State

Observed
Final Program

State

Reaches

Infects

Propagates Reveals

Incorrect
Final
State

Incorrect
Final
State

© Ammann & Offutt 28Introduction to Software Testing, Edition 2 (Ch 2)

Observed
Final Program

State

Observed
Final Program

State

Outline for today’s class
� Fundamental testing terminology

� The costs of insufficient, non-existent, or late testing

� The goals of a software tester

� Foundations of software testing

� Levels of software testing

� Types of testing activities

� Model-Driven Test Design
29

Introduction to Software Testing, Edition 2 (Ch 2) © Ammann & Offutt 30

Traditional Testing Levels

Class A

method mA1()

method mA2()

Class B

method mB1()

method mB2()

main Class P

� Acceptance testing :
Is the software
acceptable to the
user?

� Integration testing :
Test how modules
interact with each
other

� System testing : Test
the overall
functionality of the
system

� Module testing
(developer testing) :
Test each class, file,
module, component

� Unit testing
(developer testing) :
Test each unit
(method) individually

This view obscures underlying
similarities

Introduction to Software Testing, Edition 2 (Ch 2) © Ammann & Offutt 31

Object-Oriented Testing Levels

Class A

method mA1()

method mA2()

Class B

method mB1()

method mB2()

� Intra-class testing :
Test an entire class as
sequences of calls

� Inter-class testing :
Test multiple classes
together

� Inter-method testing :
Test pairs of methods
in the same class

� Intra-method testing :
Test each method
individually

Introduction to Software Testing, Edition 2 (Ch 2) © Ammann & Offutt 32

Old View : Colored Boxes
� Black-box testing : Derive tests from external

descriptions of the software, including specifications,
requirements, and design

� White-box testing : Derive tests from the source code
internals of the software, specifically including branches,
individual conditions, and statements

� Model-based testing : Derive tests from a model of the
software (such as a UML diagram)

Model-Driven Test Design makes these
distinctions less important.

The more general question is:

from what abstraction level do we derive tests?

Outline for today’s class
� Fundamental testing terminology

� The costs of insufficient, non-existent, or late testing

� The goals of a software tester

� Foundations of software testing

� Levels of software testing

� Types of testing activities

� Model-Driven Test Design
33

Types of Test Activities

� Testing can be broken up into four types of activities
1. Test Design
2. Test Automation
3. Test Execution
4. Test Evaluation

� Each type of activity requires different skills, background
knowledge, education and training

� This class: you will learn something about each of these
types of activities

Introduction to Software Testing, Edition 2 (Ch 2) © Ammann & Offutt 34

1.a) Criteria-based

1.b) Human-based

1. Test Design—(a) Criteria-Based

� This is the most technical job in software testing

� Requires knowledge of :
– Discrete math
– Programming
– Testing

� Assigning this task to people who are not trained to
design tests is a sure way to get ineffective tests

Introduction to Software Testing, Edition 2 (Ch 2) © Ammann & Offutt 35

Design test values to satisfy coverage
criteria or other engineering goal

1. Test Design—(b) Human-Based

� This is much harder than it may seem to developers

� Criteria-based design can be blind to special situations

� Requires knowledge of :
– Domain, testing, and user interfaces

� Requires almost no traditional CS
– A background in the domain of the software is essential

Introduction to Software Testing, Edition 2 (Ch 2) © Ammann & Offutt 36

Design test values based on domain knowledge of
the program and human knowledge of testing

2. Test Automation

� Often requires solutions to difficult problems related to
observability and controllability

� Another challenge: how to determine, embed, and
maintain the expected outputs ?

Introduction to Software Testing, Edition 2 (Ch 2) © Ammann & Offutt 37

Embed test values into executable scripts

3. Test Execution

� This is easy – and trivial if the tests are well automated

� These days, many organizations utilize a CI server for test
execution

– Travis

– Jenkins

– ??

Introduction to Software Testing, Edition 2 (Ch 2) © Ammann & Offutt 38

Run tests on the software and record the results

Other Testing Activities
� Test management : Sets policy, organizes team, interfaces

with development, chooses criteria, decides how much
automation is needed, …

� Test maintenance : Reuse tests as software evolves
– Regression testing

– Deciding when to trim the test suite is partly policy and partly
technical – and very hard !

� Test documentation :
– Keep documentation in the automated tests

Introduction to Software Testing, Edition 2 (Ch 2) © Ammann & Offutt 39

Outline for today’s class
� Fundamental testing terminology

� The costs of insufficient, non-existent, or late testing

� The goals of a software tester

� Foundations of software testing

� Levels of software testing

� Types of testing activities

� Model-Driven Test Design
40

Next Class
� Test Automation

– JUnit

– We may cover some Maven as well

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 49

