
CS 5154

Test Automation

Owolabi Legunsen

The following are modified versions of the publicly-available slides for Chapter 3
in the Ammann and Offutt Book, “Introduction to Software Testing”

(http://www.cs.gmu.edu/~offutt/softwaretest)

What is Test Automation?

� Reduces cost

� Reduces human error

� Reduces variance in test quality from different individuals

� Significantly reduces the cost of regression testing

Introduction to Software Testing, Edition 2 (Ch 3) © Ammann & Offutt 2

The use of software to control the execution of tests, the
comparison of actual outcomes to predicted outcomes, the
setting up of test preconditions, and other test control and

test reporting functions

Software Testability (3.1)

� Plainly speaking – how hard it is to find faults in the
software

� Testability is dominated by two practical problems

– How to provide the test values to the software

– How to observe the results of test execution

Introduction to Software Testing, Edition 2 (Ch 3) © Ammann & Offutt 3

The degree to which a system or component facilitates the
establishment of test criteria and the performance of tests

to determine whether those criteria have been met

Observability and Controllability
� Observability

– Software that affects hardware devices, databases, or remote
files have low observability

� Controllability

– Easy to control software with inputs from keyboards

– Inputs from hardware sensors or distributed software is harder

Introduction to Software Testing, Edition 2 (Ch 3) © Ammann & Offutt 4

How easy it is to observe the behavior of a program in
terms of its outputs, effects on the environment and other

hardware and software components

How easy it is to provide a program with the needed
inputs, in terms of values, operations, and behaviors

Components of a Test Case (3.2)

� A test case is a multipart artifact with a definite structure

� Test case values

� Expected results

– A test oracle uses expected results to decide whether a test
passed or failed

Introduction to Software Testing, Edition 2 (Ch 3) © Ammann & Offutt 5

The result that will be produced by the test if the software
behaves as expected

The input values needed to complete an execution of the
software under test

Affecting Controllability and
Observability

� Prefix values

� Postfix values

1. Verification Values : Values needed to see the results of the test
case values

2. Exit Values : Values or commands needed to terminate the
program or otherwise return it to a stable state

Introduction to Software Testing, Edition 2 (Ch 3) © Ammann & Offutt 6

Any inputs that need to be sent to the software after the
test case values are sent

Inputs necessary to put the software into the appropriate
state to receive the test case values

Quiz: How do these map to RIPR?
� Expected Results:

� Test Case Values:

� Prefix Values:

� Postfix Values:

Introduction to Software Testing, Edition 2 (Ch 3) © Ammann & Offutt 7

How do these map to RIPR?
� Prefix Values: Reachability

� Test Case Values: Infection

� Postfix Values: Propagation

� Expected Results: Revealbility

Introduction to Software Testing, Edition 2 (Ch 3) © Ammann & Offutt 8

Putting Tests Together
� Test case

� Test set

� Executable test script

Introduction to Software Testing, Edition 2 (Ch 3) © Ammann & Offutt 9

The test case values, prefix values, postfix values, and
expected results necessary for a complete execution and

evaluation of the software under test

A set of test cases

A test case that is prepared in a form to be executed
automatically on the test software and produce a report

Test Automation Framework (3.3)

Introduction to Software Testing, Edition 2 (Ch 3) © Ammann & Offutt 10

A set of assumptions, concepts, and tools
that support test automation

Introduction to Software Testing, Edition 2 (Ch 3) © Ammann & Offutt 11

What is JUnit?
� Open source Java testing framework used to write and

run repeatable automated tests

� JUnit is open source (junit.org)

� A structure for writing test drivers

� JUnit features include:

– Assertions for testing expected results

– Test features for sharing common test data

– Test suites for easily organizing and running tests

– Graphical and textual test runners

� JUnit is widely used in industry

� JUnit can be used as stand alone Java programs (from the
command line) or within an IDE such as Eclipse

Introduction to Software Testing, Edition 2 (Ch 3) © Ammann & Offutt 12

JUnit Tests
� JUnit can be used to test …

– … an entire object

– … part of an object – a method or some interacting methods

– … interaction between several objects

� It is primarily intended for unit and integration testing, not
system testing

� Each test is embedded into one test method

� A test class contains one or more test methods
� Test classes include :

– A collection of test methods
– Methods to set up the state before and update the state after

each test and before and after all tests

� Get started at junit.org

Introduction to Software Testing, Edition 2 (Ch 3) © Ammann & Offutt 13

Writing Tests for JUnit
� Need to use methods of the junit.framework.assert class

– javadoc gives a complete description of its capabilities

� Each test method checks a condition (assertion) and
reports to the test runner whether the test failed or
succeeded

� The test runner uses the result to report to the user (in
command line mode) or update the display (in an IDE)

� All of the methods return void

� A few representative methods of junit.framework.assert
– assertTrue (boolean)

– assertTrue (String, boolean)

– fail (String)

Introduction to Software Testing, Edition 2 (Ch 3) © Ammann & Offutt 14

JUnit Test Fixtures

� A test fixture is the state of the test

– Objects and variables that are used by more than one test

– Initializations (prefix values)

– Reset values (postfix values)

� Different tests can use the objects without sharing the
state

� Objects used in test fixtures should be declared as
instance variables

� They should be initialized in a @Before method

� Can be deallocated or reset in an @After method

Introduction to Software Testing, Edition 2 (Ch 3) © Ammann & Offutt 15

Simple JUnit Example
public class Calc
{

static public int add (int a, int b)
{

return a + b;
}

}

import org.junit.Test;
import static org.junit.Assert.*;

public class CalcTest
{

@Test public void testAdd()
{

assertTrue (“Calc sum incorrect”,
5 == Calc.add (2, 3));

}
}

Test
values

Expected
output

Printed if
assert fails

Note: JUnit 4 syntax

Introduction to Software Testing, Edition 2 (Ch 3) © Ammann & Offutt 16

Testing the Min Class
import java.util.*;

public class Min
{
/**

* Returns the mininum element in a list
* @param list Comparable list of elements to search
* @return the minimum element in the list
* @throws NullPointerException if list is null or
* if any list elements are null
* @throws ClassCastException if list elements are not mutually

comparable
* @throws IllegalArgumentException if list is empty
*/
…

}

Introduction to Software Testing, Edition 2 (Ch 3) © Ammann & Offutt 17

Testing the Min Class
import java.util.*;

public class Min
{
/**

* Returns the mininum element in a list
* @param list Comparable list of elements to search
* @return the minimum element in the list
* @throws NullPointerException if list is null or
* if any list elements are null
* @throws ClassCastException if list elements are not mutually

comparable
* @throws IllegalArgumentException if list is empty
*/

…
}

public static <T extends Comparable<? super T>> T min (List<? extends T>
list)

{
if (list.size() == 0)
{

throw new IllegalArgumentException ("Min.min");
}
Iterator<? extends T> itr = list.iterator();
T result = itr.next();

if (result == null) throw new NullPointerException ("Min.min");

while (itr.hasNext())
{ // throws NPE, CCE as needed

T comp = itr.next();
if (comp.compareTo (result) < 0)
{

result = comp;
} }
return result;

}

MinTest Class
� Standard imports for

all JUnit classes :

Introduction to Software Testing, Edition 2 (Ch 3) © Ammann & Offutt 18

import static org.junit.Assert.*;
import org.junit.*;
import java.util.*;

� Test fixture and pre-
test setup method
(prefix) :

� Post test teardown
method (postfix) :

private List<String> list; // Test fixture

// Set up - Called before every test method.
@Before
public void setUp()
{

list = new ArrayList<String>();
}

// Tear down - Called after every test method.
@After
public void tearDown()
{

list = null; // redundant in this example
}

Introduction to Software Testing, Edition 2 (Ch 3) © Ammann & Offutt 19

Min Test Cases: NullPointerException
@Test public void testForNullList()
{

list = null;
try {

Min.min (list);
} catch (NullPointerException e) {

return;
}
fail (“NullPointerException expected”);

}

@Test (expected =
NullPointerException.class)
public void testForNullElement()
{

list.add (null);
list.add ("cat");
Min.min (list);

}
This NullPointerException
test uses the fail assertion

This NullPointerException test
decorates the @Test
annotation with the class of the
exception

This NullPointerException
test catches an easily
overlooked special case

@Test (expected =
NullPointerException.class)
public void testForSoloNullElement()
{

list.add (null);
Min.min (list);

}

Introduction to Software Testing, Edition 2 (Ch 3) © Ammann & Offutt 20

More Exception Test Cases for Min
@Test (expected =
ClassCastException.class)
@SuppressWarnings ("unchecked")
public void testMutuallyIncomparable()
{

List list = new ArrayList();
list.add ("cat");
list.add ("dog");
list.add (1);
Min.min (list);

}

@Test (expected = IllegalArgumentException.class)
public void testEmptyList()
{

Min.min (list);
}

Note that Java
generics don’t
prevent clients from
using raw types!

Special case: Testing for the
empty list

Introduction to Software Testing, Edition 2 (Ch 3) © Ammann & Offutt 21

Remaining Test Cases for Min

Finally! A couple of
“Happy Path” tests

@Test
public void testSingleElement()
{

list.add ("cat");
Object obj = Min.min (list);
assertTrue ("Single Element List", obj.equals ("cat"));

}

@Test
public void testDoubleElement()
{

list.add ("dog");
list.add ("cat");
Object obj = Min.min (list);
assertTrue ("Double Element List", obj.equals ("cat"));

}

Summary: Seven Tests for Min

� Five tests with exceptions

1. null list

2. null element with multiple elements

3. null single element

4. incomparable types

5. empty elements

� Two without exceptions

6. single element

7. two elements

Introduction to Software Testing, Edition 2 (Ch 3) © Ammann & Offutt 22

Data-Driven Tests
� Problem : Testing a function multiple times with similar

values

– How to avoid test code bloat?

� Simple example : Adding two numbers

– Adding a given pair of numbers is just like adding any other pair

– You really only want to write one test

� Data-driven unit tests call a constructor for each
collection of test values

– Same tests are then run on each set of data values

– Collection of data values defined by method tagged with
@Parameters annotation

Introduction to Software Testing, Edition 2 (Ch 3) © Ammann & Offutt 23

Introduction to Software Testing, Edition 2 (Ch 3) © Ammann & Offutt 24

Example JUnit Data-Driven Unit Test
import org.junit.*;
import org.junit.runner.RunWith;
import org.junit.runners.Parameterized;
import org.junit.runners.Parameterized.Parameters;
import static org.junit.Assert.*;
import java.util.*;

@RunWith (Parameterized.class)
public class DataDrivenCalcTest
{ public int a, b, sum;

public DataDrivenCalcTest (int v1, int v2, int expected)
{ this.a = v1; this.b = v2; this.sum = expected; }

@Parameters public static Collection<Object[]> parameters()
{ return Arrays.asList (new Object [][] {{1, 1, 2}, {2, 3, 5}}); }

@Test public void additionTest()
{ assertTrue ("Addition Test", sum == Calc.add (a, b)); }

}

Test 1
Test values: 1, 1
Expected: 2

Test 2
Test values: 2, 3
Expected: 5

Constructor is
called for each
triple of values

Test method

Introduction to Software Testing, Edition 2 (Ch 3) © Ammann & Offutt 26

How to Run Tests
� JUnit provides test drivers

– Character-based test driver runs from the command line

– GUI-based test driver-junit.swingui.TestRunner
• Not covered in this course

� If a test fails, JUnit gives the location of the failure and any
exceptions that were thrown

Introduction to Software Testing, Edition 2 (Ch 3) © Ammann & Offutt 27

JUnit Resources
� There are many JUnit tutorials on the Internet

� JUnit: Download, Documentation

– https://junit.org/junit4

Introduction to Software Testing, Edition 2 (Ch 3) © Ammann & Offutt 28

Summary
� The only way to make testing efficient as well as effective

is to automate as much as possible

� Test frameworks provide very simple ways to automate
our tests

� It is no “silver bullet” however … it does not solve the
hard problem of testing :

What test values to use ?

• This is test design … the purpose of test criteria

