
CS 5154

Syntax-based Testing

Owolabi Legunsen

The following are modified versions of the publicly-available slides for Chapter 9
in the Ammann and Offutt Book, “Introduction to Software Testing”

(http://www.cs.gmu.edu/~offutt/softwaretest)

Syntax-based Testing

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 2

Four Structures for
Modeling Software

Graphs LogicInput Space Syntax

Input

Models

Integ

Source

Applied
to

DNFSpecs

FSMsSource

Applied to

Use cases

Specs

Design

Source

Applied
to

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 3

Using Syntax to Generate Tests

• Lots of software artifacts follow strict syntax rules

– Syntax is often expressed as a grammar in a language, e.g., BNF

• Syntactic descriptions can come from many sources

– Programs, integration elements, design docs, input descriptions

• Syntax-based tests are created with two general goals

– Cover the syntax in some way

– Violate the syntax (invalid tests)

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 4

Grammar Coverage Criteria
• Software engineers use automata theory in several ways

– Programming languages defined in BNF

– Program behavior described as finite state machines

– Allowable inputs defined by grammars

• A simple regular expression:

(G s n | B t n)*
‘*’ is closure operator, zero
or more occurrences

‘|’ is choice, either one
can be used

• Any sequence of “G s n” and “B t n”

• ‘G’ and ‘B’ could represent commands, methods, or events

• ‘s’, ‘t’, and ‘n’ can represent arguments, parameters, or values

• ‘s’, ‘t’, and ‘n’ could represent literals or a set of values

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 5

Test Cases from the Regex
• Strings satisfying the derivation rules are “in the grammar”

• Test: a sequence of strings that satisfy the regex

• Suppose ‘s’, ‘t’ and ‘n’ are numbers

G 26 08.01.90

B 22 06.27.94

G 22 11.21.94

B 13 01.09.03

Could be one test with four parts
or four separate tests, etc.

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 6

BNF Grammars

Stream ::= action*

action ::= actG | actB

actG ::= “G” s n

actB ::= “B” t n

s ::= digit1-3

t ::= digit1-3

n ::= digit2 “.” digit2 “.” digit2

digit ::= “0” | “1” | “2” | “3” | “4” | “5” | “6” |

“7” | “8” | “9”

Non-terminals

Terminals

Production rule

Start symbol

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 7

Using Grammars

• Recognizer : Is a string (or test) in the grammar ?

– This is called parsing

– Tools exist to support parsing

– Programs can use them for input validation

• Generator : Derive strings that are in a given grammar

Stream ::= action action *

::= actG action*

::= G s n action*

::= G digit1-3 digit2 . digit2 . digit2 action*

::= G digitdigit digitdigit.digitdigit.digitdigit action*

::= G 25 08.01.90 action*

…

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 8

Grammar-based Coverage Criteria

• The most common and straightforward criteria use every
terminal and every production at least once

Terminal Symbol Coverage (TSC) : TR contains each
terminal symbol t in the grammar G.

Production Coverage (PDC) : TR contains each
production p in the grammar G.

• PDC subsumes TSC

• Grammars and graphs are interchangeable
– PDC is equivalent to EC, TSC is equivalent to NC

• Other graph-based coverage criteria could be defined on grammar
– But have not

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 9

Grammar-based Coverage Criteria (2)

• A related criterion involves deriving all possible strings
from the grammar

Derivation Coverage (DC) : TR contains every possible
string that can be derived from the grammar G.

• DC often requires an impractical number of tests…

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 10

Number of tests produced by
Grammar-based Criteria

• Number of TSC tests is bound by the number of terminal symbols
– 13 in the stream grammar

• The number of PDC tests is bound by the number of productions
– 18 in the stream grammar

• The number of DC tests depends on the details of the grammar
– 2,000,000,000 in the stream grammar !

• All TSC, PDC and DC tests are in the grammar … how about tests
that are NOT in the grammar ?

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 11

Mutation as Grammar-Based
Testing

Grammar-based
Testing

UnMutated Derivations

(valid strings)

Mutated Derivations

(invalid strings)

Grammar Mutation

(invalid strings)

Ground String
Mutation

Invalid Strings Valid Strings

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 12

Mutation Testing

• Grammars describe both valid and invalid strings

• Both types can be produced as mutants

• A mutant is a variation of a valid string

– Mutants may be valid or invalid strings

• Mutation is based on “mutation operators” and “ground
strings”

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 13

What is Mutation ?

General View

We are performing mutation analysis whenever we

• use well defined rules

• defined on syntactic descriptions

• to make systematic changes

• to the syntax or to objects developed from the syntax

mutation
operators

grammars

grammar ground strings

(tests or programs)

Applied universally or
according to empirically

verified distributions

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 14

Mutation Testing

• Ground string: A string in the grammar

– “ground” is used as an analogy to algebraic ground terms

• Mutation Operator : A rule that specifies syntactic
variations of strings generated from a grammar

• Mutant : Result of one application of a mutation operator

– a string in the grammar or close to being in the grammar

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 15

Mutants and Ground Strings

• The key to mutation testing: design of mutation operators

– Well-designed operators lead to powerful testing

– Well-designed or not?: change all predicates to true and false

• Sometimes mutants are based on ground strings

• Sometimes they are derived directly from the grammar

– Ground strings are used for valid tests

– Invalid tests do not need ground strings

Valid Mutants

Ground Strings Mutants

G 26 08.01.90 B 26 08.01.90

B 22 06.27.94 B 45 06.27.94

Invalid Mutants

7 26 08.01.90

B 22 06.27.1

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 16

Two Questions About Mutation
• Apply more than one operator at the same time ?

– Should mutated strings contain multiple mutated elements?

– Usually not: multiple mutations may interfere with each other

– Experience with program-based mutation indicates not

– Recent research is finding exceptions

• Consider all possible applications of a mutation operator ?

– Necessary with program-based mutation (subsumption)

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 17

Mutation Operators are often
language-based

• Mutation operators have been defined for many languages

– Programming languages (Fortran, Lisp, Ada, C, C++, Java)

– Specification languages (SMV, Z, Object-Z, algebraic specs)

– Modeling languages (Statecharts, activity diagrams)

– Input grammars (XML, SQL, HTML)

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 18

Testing Goal: Killing Mutants
• Hope: Mutants created as valid strings from ground strings

should exhibit different behavior from the ground string

• Normally used when grammars are prog. languages, strings
are programs, and ground strings are pre-existing programs

• Killing Mutants : Given a mutant m  M for a derivation D
and a test t, t is said to kill m if and only if the output of t on
D is different from the output of t on m

• D may be shown as list of productions or as the final string

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 19

Syntax-based Coverage Criteria

• Coverage is defined in terms of killing mutants

Mutation Coverage (MC) : For each m  M, TR contains
exactly one requirement, to kill m.

• Coverage in mutation equates to killing mutants

• Mutation score : ratio of mutants killed over all mutants

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 20

Syntax-based Coverage Criteria

• When creating invalid strings, we just apply the operators

• This results in two simple criteria

• It makes sense to either use every operator once or
every production once

Mutation Production Coverage (MPC) : For each
mutation operator, TR contains several requirements, to
create one mutated string m that includes every
production that can be mutated by that operator.

Mutation Operator Coverage (MOC) : For each
mutation operator, TR contains exactly one requirement,
to create a mutated string m that is derived using the
mutation operator.

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 21

Example

Ground String

G 25 08.01.90

B 21 06.27.94

Mutation Operators

• Exchange actG and actB

• Replace digits with all other digits

Mutants using MOC

B 25 08.01.90

B 23 06.27.94

Mutants using MPC

B 25 08.01.90 G 21 06.27.94

G 15 08.01.90 B 22 06.27.94

G 35 08.01.90 B 23 06.27.94

G 45 08.01.90 B 24 06.27.94

… …

Stream ::= action*
action ::= actG | actB
actG ::= “G” s n
actB ::= “B” t n
s ::= digit1-3

t ::= digit1-3

n ::= digit2 “.” digit2 “.” digit2

digit ::= “0” | “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9”

Grammar

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 22

Mutation Testing
• Number of test requirements depends on two things

– The syntax of the artifact being mutated

– The mutation operators

• Mutation testing is very difficult to apply by hand

• Mutation testing is very effective – sometimes considered
the “gold standard” of testing

• Mutation testing is often used to evaluate other criteria

– How good is your test suite?

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 23

Instantiating Grammar-Based
Testing

Grammar-Based Testing

Program-based Integration Model-Based Input-Based

• Compiler testing

•Valid and invalid strings

Grammar

String
mutation

• Program mutation

•Valid strings

• Mutants are not tests

• Tests must kill mutants

• Input validation testing

• XML and others

•Valid strings

Grammar
• Test how classes interact

•Valid strings

• Mutants are not tests

• Must kill mutants

• Includes OO

String
mutation

• FSMs

• Model checking

•Valid strings

• Traces are tests

String
mutation

• Input validation

testing

• XML and others

• Invalid strings

• No ground strings

• Mutants are tests

String
mutation

Next
• Mutation testing (including a demo )

• We should release scores on HW1 and HW2 by end of
week

– Drop deadline?

• Course Project…

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 25

Stats about your preferences
• Groups:

– 20 expressed no preference for teammates

– 26 expressed preferences for teammates in a consistent way

– 18 expressed preferences in an inconsistent way

• Reasons for preferences

– Asia time zone

– Previous working relationship

– Personal reasons and friendships

• Options:

– ~50 chose option 1

– ~10 chose option 2

– ~4 chose options 3 and 4

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 26

My decision
• Groups:

– 58 will form groups of 3 (one group will have 4)

– 6 will form two groups of 3 based on Asia Time Zone

• Reasons for preferences

– Asia time zone

– Previous working relationship

– Personal reasons and friendships

• Options:

– ~62 decided on option 1

– ~2 are still on option 2 but have no one to work with

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 27

Next Steps on Course Project
• Project requirements and groups will be released soon

• Spend time meeting your group mates

– We may dedicate some time in the next class for you to meet

– We may also have you do HW3 with your project team to
facilitate bonding

• Keep working on your course project through the rest of
the semester

– 35% of your course grade

– Contributions will be clear(er) from the CI server

• We may hold project office hours so you can ask questions
Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 28

