CS 5154

Syntax-based Testing

Owolabi Legunsen

The following are modified versions of the publicly-available slides for Chapter 9
in the Ammann and Offutt Book, “Introduction to Software Testing”
(http://www.cs.gmu.edu/~offutt/softwaretest)

Syntax-based Testing

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Using Syntax to Generate Tests

» Lots of software artifacts follow strict syntax rules

— Syntax is often expressed as a grammar in a language, e.g., BNF

» Syntactic descriptions can come from many sources

— Programs, integration elements, design docs, input descriptions

 Syntax-based tests are created with two general goals
— Cover the syntax in some way

— Violate the syntax (invalid tests)

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt

Grammar Coverage Criteria
Software engineers use automata theory in several ways
— Programming languages defined in BNF
— Program behavior described as finite state machines
— Allowable inputs defined by grammars

A simple regular expression:

" “* is closure operator, zero
(G sh |\B t n) or more occurrences

\ ‘|’ is choice, either one

can be used

Any sequence of “Gs n” and“B t n”
‘G’ and ‘B’ could represent commands, methods, or events
's’,'t’,and ‘n’ can represent arguments, parameters, or values

's’,'t’,and ‘n’ could represent literals or a set of values

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt

Test Cases from the Regex

» Strings satisfying the derivation rules are “in the grammar”
 Test: a sequence of strings that satisfy the regex

 Suppose ‘s’, ‘t’ and ‘n’ are numbers

G 26 08.01.90

B 22 06.27.94 Could be one test with four parts

or four separate tests, etc.

G 22 11.21.94
B 13 01.09.03

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt

BNF Grammars

Stream_::=_ action*

Start symbol

action GiE actG | actB

actG “::= “G”s n

= “B” t D7 Production rule

Non-terminals

= digit!-3
= digit!? Terminals
= digit? “.” digit? “.” digit? /
digit = “07|“17]“2” | “3”|“4” | “5” | “6” |
77| “8” | “9”

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt

Using Grammars

Stream ::= action action*
::= actG action”
::= G s n action®
.= G digit'-3 digit? . digit? . digit? action*
::= G digitdigit digitdigit.digitdigit.digitdigit action*
=G 25 08.01.90 action®

« Recognizer : Is a string (or test) in the grammar ?

— This is called parsing
— Tools exist to support parsing
— Programs can use them for input validation

« Generator : Derive strings that are in a given grammar

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt

Grammar-based Coverage Criteria

« The most common and straightforward criteria use every
terminal and every production at least once

Terminal Symbol Coverage (TSC) : TR contains each
terminal symbol tin the grammar G.

Production Coverage (PDC) : TR contains each
production p in the grammar G.

« PDC subsumes TSC

« Grammars and graphs are interchangeable
— PDC is equivalent to EC,TSC is equivalent to NC

« Other graph-based coverage criteria could be defined on grammar
— But have not

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt

Grammar-based Coverage Criteria (2)

A related criterion involves deriving all possible strings
from the grammar

Derivation Coverage (DC) : TR contains every possible
string that can be derived from the grammar G.

« DC often requires an impractical number of tests...

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt

Number of tests produced by
Grammar-based Criteria

Number of TSC tests is bound by the number of terminal symbols

— |3 in the stream grammar

The number of PDC tests is bound by the number of productions

— 18 in the stream grammar

The number of DC tests depends on the details of the grammar
— 2,000,000,000 in the stream grammar !

Al TSC, PDC and DC tests are in the grammar ... how about tests
that are NOT in the grammar ?

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt

Mutation as Grammar-Based
Testing

Grammar-based
Testing

N
4 A’

UnMutated Derivations Mutated Derivations

(valid strings) (invalid strings)

A
4 R

Grammar Mutation | | Ground String

(invalid strings) Mutation

AN
/ R

Invalid Strings || Valid Strings

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 11

Mutation Testing

Grammars describe both valid and invalid strings
Both types can be produced as mutants

A mutant is a variation of a valid string

— Mutants may be valid or invalid strings

Mutation is based on “mutation operators” and “ground
strings”

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt

What i1s Mutation ?

mutation
operators

We are performing mutation analysis whenever we
grammars

General View

e use well defined rules

Applied universally or
according to empirically

* to make systematic changes verified distributions

* defined on syntactic descriptions

* to the syntax or to objects developed from the syntax

— ground strings

(tests or programs)

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt

Mutation Testing

« Ground string: A string in the grammar

— “ground” is used as an analogy to algebraic ground terms

« Mutation Operator : A rule that specifies syntactic
variations of strings generated from a grammar

« Mutant : Result of one application of a mutation operator

— a string in the grammar or close to being in the grammar

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt

Mutants and Ground Strings

« The key to mutation testing: design of mutation operators
— Well-designed operators lead to powerful testing

— Well-designed or not!: change all predicates to true and false
« Sometimes mutants are based on ground strings
« Sometimes they are derived directly from the grammar

— Ground strings are used for valid tests

— Invalid tests do not need ground strings

Valid Mutants Invalid Mutants
Ground Strings Mutants /7 26 08.01.90
G 26 08.01.90 B 26 08.01.90 B 22 06.27.1
B2206.27.94 B 45 06.27.94

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt

Two Questions About Mutation

« Apply more than one operator at the same time !

— Should mutated strings contain multiple mutated elements?
— Usually not: multiple mutations may interfere with each other
— Experience with program-based mutation indicates not

— Recent research is finding exceptions

« Consider all possible applications of a mutation operator !

— Necessary with program-based mutation (subsumption)

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt

Mutation Operators are often
language-based

 Mutation operators have been defined for many languages
— Programming languages (Fortran, Lisp, Ada, C, C++, Java)
— Specification languages (SMV, Z, Object-Z, algebraic specs)
— Modeling languages (Statecharts, activity diagrams)

— Input grammars (XML, SQL, HTML)

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt

Testing Goal: Killing Mutants

» Hope: Mutants created as valid strings from ground strings
should exhibit different behavior from the ground string

* Normally used when grammars are prog. languages, strings
are programs, and ground strings are pre-existing programs

» Killing Mutants : Given a mutant m € M for a derivation D
and a test t, t is said to kill m if and only if the output of t on
D is different from the output of t on m

* D may be shown as list of productions or as the final string

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 18

Syntax-based Coverage Criteria

« Coverage is defined in terms of killing mutants

Mutation Coverage (MC) : For each m € M, TR contains
exactly one requirement, to kill m.

« Coverage in mutation equates to killing mutants

« Mutation score : ratio of mutants killed over all mutants

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt

Syntax-based Coverage Criteria

* When creating invalid strings, we just apply the operators

 This results in two simple criteria

* |t makes sense to either use every operator once or
every production once

Mutation Operator Coverage (MOC) : For each
mutation operator, TR contains exactly one requirement,
to create a mutated string m that is derived using the
mutation operator.

Mutation Production Coverage (MPCQC) : For each
mutation operator, TR contains several requirements, to
create one mutated string m that includes every
production that can be mutated by that operator.

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt

Example

Stream ::
action
actG

:= action*
actB =

actG | actB Grammar

S
t
n

digit? “.” digit? “.” digit?
digit

“0” | “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8” I “9”

Ground String

Mutation Operators

G 25 08.01.90 * Exchange actG and actB
B 21 06.27.94

* Replace digits with all other digits

Mutants using MPC
Mutants using MOC B 25 08.01.90 G 21 06.27.94
B 25 08.01.90 G 1508.01.90 B 22 06.27.94

B 23 06.27.94 G 35 08.01.90 B 23 06.27.94
G 45 08.01.90 B 24 06.27.94

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt

Mutation Testing

Number of test requirements depends on two things

— The syntax of the artifact being mutated

— The mutation operators

Mutation testing is very difficult to apply by hand

Mutation testing is very effective — sometimes considered
the “gold standard” of testing

Mutation testing is often used to evaluate other criteria

— How good is your test suite?

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt

Instantiating Grammar-Based
Testing

Grammar-Based Testing

\ 4 \ 4

Program-based Integration Model-Based Input-Based

Strin.g String Strmg .
mutation muthtion S %Strmg

\ 4

utation

* Program mutation
* FSMs

* Valid strings * Input validation
* Model checking P
* Mutants are not tests

, , testing
) * Valid strings
* Tests must kill mutants XML and others
* Traces are tests

* Invalid strings

* Compiler testing * No ground strings

* Test how classes interact G
rFami « Mutants are tests

* Valid and invalid strings

* Valid strings

* Mutants are not tests

e Must kill mutants * Input validation testing
¢ Includes OO * XML and others

*Valid strings

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt

Next

» Mutation testing (including a demo ©)

» We should release scores on HW| and HW?2 by end of
week
— Drop deadline!?

» Course Project...

© Ammann & Offutt

Introduction to Software Testing, edition 2 (Ch 9)

Stats about your preferences

« Groups:
— 20 expressed no preference for teammates
— 26 expressed preferences for teammates in a consistent way

— |8 expressed preferences in an inconsistent way
 Reasons for preferences
— Asia time zone

— Previous working relationship

— Personal reasons and friendships

« Options:

— ~50 chose option |
— ~10 chose option 2

— ~4 chose options 3 and 4

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt

My decision

« Groups:
— 58 will form groups of 3 (one group will have 4)

— 6 will form two groups of 3 based on Asia Time Zone

 Reasons for preferences

— Asia time zone

Brei b e
B | friandshs

« Options:
— ~62 decided on option |

— ~2 are still on option 2 but have no one to work with

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt

Next Steps on Course Project

 Project requirements and groups will be released soon

« Spend time meeting your group mates
— We may dedicate some time in the next class for you to meet

— We may also have you do HW3 with your project team to
facilitate bonding

« Keep working on your course project through the rest of
the semester

— 35% of your course grade
— Contributions will be clear(er) from the Cl server

* We may hold project office hours so you can ask questions

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 28

