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The following are modified versions of the publicly-available slides for Chapter 9 
in the Ammann and Offutt Book, “Introduction to Software Testing” 

(http://www.cs.gmu.edu/~offutt/softwaretest)
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Using Syntax to Generate Tests

• Lots of software artifacts follow strict syntax rules

– Syntax is often expressed as a grammar in a language, e.g., BNF

• Syntactic descriptions can come from many sources

– Programs, integration elements, design docs, input descriptions

• Syntax-based tests are created with two general goals

– Cover the syntax in some way

– Violate the syntax (invalid tests)
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Grammar Coverage Criteria
• Software engineers use automata theory in several ways

– Programming languages defined in BNF

– Program behavior described as finite state machines

– Allowable inputs defined by grammars

• A simple regular expression:

(G s n | B t n)*
‘*’ is closure operator, zero 
or more occurrences

‘|’ is choice, either one 
can be used

• Any sequence of “G s n” and “B t n”

• ‘G’ and ‘B’ could represent commands, methods, or events

• ‘s’, ‘t’, and ‘n’ can represent arguments, parameters, or values

• ‘s’, ‘t’, and ‘n’ could represent literals or a set of values
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Test Cases from the Regex
• Strings satisfying the derivation rules are “in the grammar”

• Test: a sequence of strings that satisfy the regex

• Suppose ‘s’, ‘t’ and ‘n’ are numbers

G  26  08.01.90

B  22  06.27.94

G  22  11.21.94

B  13  01.09.03

Could be one test with four parts 
or four separate tests,  etc.
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BNF Grammars

Stream  ::=  action*

action   ::=  actG |  actB

actG ::=  “G” s  n

actB ::=  “B”  t  n

s            ::=  digit1-3

t             ::=  digit1-3

n            ::=  digit2 “.”  digit2 “.”  digit2

digit       ::=  “0” | “1” | “2” | “3” | “4” | “5” | “6” |

“7” | “8” | “9”

Non-terminals

Terminals

Production rule

Start symbol
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Using Grammars

• Recognizer : Is a string (or test) in the grammar ?

– This is called parsing

– Tools exist to support parsing

– Programs can use them for input validation

• Generator : Derive strings that are in a given grammar

Stream  ::= action  action *

::= actG action*

::= G s n action*

::= G digit1-3 digit2 . digit2 . digit2 action*

::= G digitdigit digitdigit.digitdigit.digitdigit action*

::= G 25 08.01.90  action*

…
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Grammar-based Coverage Criteria

• The most common and straightforward criteria use every 
terminal and every production at least once

Terminal Symbol Coverage (TSC) : TR contains each 
terminal  symbol t in the grammar G.

Production Coverage (PDC) : TR contains each 
production p in the grammar G.

• PDC subsumes TSC

• Grammars and graphs are interchangeable
– PDC is equivalent to EC, TSC is equivalent to NC

• Other graph-based coverage criteria could be defined on grammar
– But have not
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Grammar-based Coverage Criteria (2)

• A related criterion involves deriving all possible strings 
from the grammar

Derivation Coverage (DC) : TR contains every possible 
string that can be derived from the grammar G.

• DC often requires an impractical number of tests…
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Number of tests produced by 
Grammar-based Criteria

• Number of TSC tests is bound by the number of terminal symbols
– 13 in the stream grammar

• The number of PDC tests is bound by the number of productions
– 18 in the stream grammar

• The number of DC tests depends on the details of the grammar
– 2,000,000,000 in the stream grammar !

• All TSC, PDC and DC tests are in the grammar … how about tests 
that are NOT in the grammar ?
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Mutation as Grammar-Based 
Testing

Grammar-based 
Testing

UnMutated Derivations

(valid strings)

Mutated Derivations

(invalid strings)

Grammar Mutation

(invalid strings)

Ground String 
Mutation

Invalid Strings Valid Strings
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Mutation Testing

• Grammars describe both valid and invalid strings

• Both types can be produced as mutants

• A mutant is a variation of a valid string

– Mutants may be valid or invalid strings

• Mutation is based on “mutation operators” and “ground 
strings”
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What is Mutation ?

General View

We are performing mutation analysis whenever we

• use well defined rules

• defined on syntactic descriptions

• to make systematic changes

• to the syntax or to objects developed from the syntax

mutation 
operators

grammars

grammar ground strings

(tests or programs)

Applied universally or 
according to empirically 

verified distributions
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Mutation Testing

• Ground string: A string in the grammar

– “ground” is used as an analogy to algebraic ground terms

• Mutation Operator : A rule that specifies syntactic 
variations of strings generated from a grammar

• Mutant : Result of one application of a mutation operator

– a string in the grammar or close to being in the grammar
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Mutants and Ground Strings

• The key to mutation testing: design of mutation operators

– Well-designed operators lead to powerful testing

– Well-designed or not?: change all predicates to true and false

• Sometimes mutants are based on ground strings

• Sometimes they are derived directly from the grammar

– Ground strings are used for valid tests

– Invalid tests do not need ground strings

Valid Mutants

Ground Strings Mutants

G 26 08.01.90     B 26  08.01.90

B 22 06.27.94     B  45 06.27.94

Invalid Mutants

7 26  08.01.90

B  22 06.27.1
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Two Questions About Mutation
• Apply more than one operator at the same time ?

– Should mutated strings contain multiple mutated elements?

– Usually not: multiple mutations may interfere with each other

– Experience with program-based mutation indicates not

– Recent research is finding exceptions

• Consider all possible applications of a mutation operator ?

– Necessary with program-based mutation (subsumption)
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Mutation Operators are often 
language-based

• Mutation operators have been defined for many languages

– Programming languages (Fortran, Lisp, Ada, C, C++, Java)

– Specification languages (SMV, Z, Object-Z, algebraic specs)

– Modeling languages (Statecharts, activity diagrams)

– Input grammars (XML, SQL, HTML)
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Testing Goal: Killing Mutants
• Hope: Mutants created as valid strings from ground strings 

should exhibit different behavior from the ground string

• Normally used when grammars are prog. languages, strings 
are programs, and ground strings are pre-existing programs

• Killing Mutants : Given a mutant m  M for a derivation D
and a test t, t is said to kill m if and only if the output of t on 
D is different from the output of t on m

• D may be shown as list of productions or as the final string
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Syntax-based Coverage Criteria

• Coverage is defined in terms of killing mutants

Mutation Coverage (MC) : For each m  M, TR contains 
exactly one requirement, to kill m.

• Coverage in mutation equates to killing mutants

• Mutation score : ratio of mutants killed over all mutants
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Syntax-based Coverage Criteria

• When creating invalid strings, we just apply the operators

• This results in two simple criteria

• It makes sense to either use every operator once or 
every production once

Mutation Production Coverage (MPC) : For each 
mutation operator, TR contains several requirements, to 
create one mutated string m that includes every 
production that can be mutated by that operator.

Mutation Operator Coverage (MOC) : For each 
mutation operator, TR contains exactly one requirement, 
to create a mutated string m that is derived using the 
mutation operator.
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Example

Ground String

G  25  08.01.90

B  21  06.27.94

Mutation Operators

• Exchange actG and actB

• Replace digits with all other digits

Mutants using MOC

B 25  08.01.90

B  23 06.27.94

Mutants using MPC

B 25 08.01.90     G 21  06.27.94

G  15 08.01.90      B 22 06.27.94

G  35  08.01.90     B 23 06.27.94

G  45  08.01.90     B 24 06.27.94

…                         …

Stream  ::=  action*
action   ::=  actG |  actB
actG ::=  “G” s  n
actB ::=  “B”  t  n
s            ::=  digit1-3

t             ::=  digit1-3

n            ::=  digit2 “.”  digit2 “.”  digit2

digit       ::=  “0” | “1” | “2” | “3” | “4” | “5” | “6” |  “7” | “8” | “9”

Grammar
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Mutation Testing
• Number of test requirements depends on two things

– The syntax of the artifact being mutated

– The mutation operators

• Mutation testing is very difficult to apply by hand

• Mutation testing is very effective – sometimes considered 
the “gold standard” of testing

• Mutation testing is often used to evaluate other criteria

– How good is your test suite?
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Instantiating Grammar-Based 
Testing

Grammar-Based Testing

Program-based Integration Model-Based Input-Based

• Compiler testing

•Valid and invalid strings

Grammar

String 
mutation

• Program mutation

•Valid strings

• Mutants are not tests

• Tests must kill mutants

• Input validation testing

• XML and others

•Valid strings

Grammar
• Test how classes interact 

•Valid strings

• Mutants are not tests

• Must kill mutants

• Includes OO

String 
mutation

• FSMs

• Model checking

•Valid strings

• Traces are tests

String 
mutation

• Input validation

testing

• XML and others

• Invalid strings

• No ground strings

• Mutants are tests

String 
mutation



Next
• Mutation testing (including a demo  )

• We should release scores on HW1 and HW2 by end of 
week

– Drop deadline?

• Course Project…
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Stats about your preferences
• Groups:

– 20 expressed no preference for teammates

– 26 expressed preferences for teammates in a consistent way

– 18 expressed preferences in an inconsistent way

• Reasons for preferences

– Asia time zone

– Previous working relationship

– Personal reasons and friendships

• Options:

– ~50 chose option 1

– ~10 chose option 2

– ~4 chose options 3 and 4
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My decision
• Groups:

– 58 will form groups of 3 (one group will have 4)

– 6 will form two groups of 3 based on Asia Time Zone

• Reasons for preferences

– Asia time zone

– Previous working relationship

– Personal reasons and friendships

• Options:

– ~62 decided on option 1

– ~2 are still on option 2 but have no one to work with
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Next Steps on Course Project
• Project requirements and groups will be released soon

• Spend time meeting your group mates

– We may dedicate some time in the next class for you to meet

– We may also have you do HW3 with your project team to 
facilitate bonding

• Keep working on your course project through the rest of 
the semester

– 35% of your course grade

– Contributions will be clear(er) from the CI server

• We may hold project office hours so you can ask questions
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