
CS 5154
Regression Testing Techniques

Owolabi Legunsen

Spring 2021

Continuous Integration (CI): rapid test/release cycles

Developers

Version Control

C
o

m
m

it

C
h

an
ge

s

1

2

5

Fetch Changes

6 Release/Deploy

Builds per day:
• Facebook: 60K*
• Google: 17K
• HERE: 100K
• Microsoft: 30K
• Single open-source

projects: up to 80

Releases per day
• Etsy: 50

2

CI
Server

* Android only; Facebook: https://bit.ly/2CAPvN9 ; Google: https://bit.ly/2SYY4rR ;
HERE: https://oreil.ly/2T0EyeK ; Microsoft: https://bit.ly/2HgjUpw ; Etsy: https://bit.ly/2IiSOJP ;

?

Pass/Fail

?

* Android only; Facebook: https://bit.ly/2CAPvN9 ; Google: https://bit.ly/2SYY4rR ;
HERE: https://oreil.ly/2T0EyeK ; Microsoft: https://bit.ly/2HgjUpw ; Etsy: https://bit.ly/2IiSOJP ;Developers

Version Control

C
o

m
m

it

C
h

an
ge

s

1

2

5

Fetch Changes

6 Release/Deploy

Builds per day:
• Facebook: 60K*
• Google: 17K
• HERE: 100K
• Microsoft: 30K
• Single open-source

projects: up to 80

Releases per day
• Etsy: 50

3

CI
Server

Pass/Fail

P1: Passing tests miss bugs

S1: Find more bugs from tests
that developers already have

P2. Failed tests, no buggy changes

S2: Find bugs more reliably by
detecting such failures

P3. Testing can be very slow

S3: Find bugs faster
by speeding up testing

P4. How to test in new domains?

S4: Find bugs in emerging
application domains

Several important problems exist in these cycles

?

* Android only; Facebook: https://bit.ly/2CAPvN9 ; Google: https://bit.ly/2SYY4rR ;
HERE: https://oreil.ly/2T0EyeK ; Microsoft: https://bit.ly/2HgjUpw ; Etsy: https://bit.ly/2IiSOJP ;Developers

Version Control

C
o

m
m

it

C
h

an
ge

s

1

2

5

Fetch Changes

6 Release/Deploy

Builds per day:
• Facebook: 60K*
• Google: 17K
• HERE: 100K
• Microsoft: 30K
• Single open-source

projects: up to 80

Releases per day
• Etsy: 50

4

CI
Server

Pass/Fail

Problem: Testing can be very slow

Solution: Techniques that can help speed up regression testing

The problem that we’ll talk about today

Re-running tests can be very slow

~5min

~10min

~45min

1296

361

~4h

~17h

R
u

n
 m

an
y

ti
m

e
s

e
ac

h
 d

ay1667

641534

~45min

~45min

631

test execution time

4975

number of tests

8663
5

What are your ideas for speeding up testing?

6

In this lecture

• Speed up regression testing

• Detect regression faults as soon as possible

• Reduce cost of testing

• Common techniques:

• Regression Test Selection

• Test-Suite Reduction (Minimization)

• Test-Case Prioritization

7

Regression Testing Techniques

• Speed up regression testing

• Detect regression faults as soon as possible

• Reduce cost of testing

• Common techniques:

• Regression Test Selection

• Test-Suite Reduction (Minimization)

• Test-Case Prioritization

8

Regression Test Selection (RTS)

Rev 1733

Tests

Rev 1734

Change

T0
T1
T2
T3
…
TN

Tests

T0
T1
T2
T3
…
TN

9

How RTS works

• An affected test can behave differently due to code changes

• A test is affected if any of its dependencies changed

Code + Tests

Changes

Find
Dependencies

Dependencies

Analyze
Dependencies

Affected Tests

10

RTS at Google (Target/Module Level)

common_collections_util

youtube_client gmail_client gmail_server
youtube
_server

buzz_client buzz_server

buzz_client_
tests

gmail_client
_tests

gmail_server_
tests

buzz_server_
tests

Can we select fewer?

11

Class-level RTS

• Track dependencies between classes (in Java)

• Collect changes at class level

• Connect relationships between classes

• Select test classes (run all test methods in selected test class)

• How do we track test dependencies?

• How do we track changes?

12

Class-level Dynamic RTS (Ekstazi1)

• Find Dependencies: dynamically track classes used while running
each test class

• Instrument classes to figure out which classes are used/loaded
when running tests in some test class

• Changes: classes whose .class (bytecode) files differ

• Analyze Dependencies: select test classes for which any of its
dependencies changed

• Maintain dependencies between versions
1Gligoric et al., Practical Regression Test Selection with Dynamic File Dependencies. ISSTA 2015, https://github.com/gliga/ekstazi

13

Ekstazi Example

Rev 1733

Tests

Rev 1734

Change
{C}

T0
T1
T2
T3
…
TN

Tests

T0
T1
T2
T3
…
TN

Ekstazi Dependencies

T0: {A,B,C,D}
T1: {B}
T2: {B,C,D}
T3: {E}
…
TN: {C,F}

Ekstazi Dependencies

T0: {A,B,C,D}
T1: {B}
T2: {B,C,D,G}
T3: {E}
…
TN: {C,F,G}

14

Class-level STAtic RTS (STARTS1)

• First, statically build a class dependency graph

• Each class has an edge to direct superclass/interface and
referenced classes

• Find Dependencies: classes reachable from test class in the graph

• Changes: computed in same way as Ekstazi

• Analyze Dependencies: select test classes that reach a changed class
in the graph

1Legunsen et al., An Extensive Study of Static Regression Test Selection in Modern Software Evolution. FSE 2016
15

STARTS Example

T0

T1

T2

T3

TN

…

A

B

C

D

E

F

STARTS Dependencies

T0: {A,B,C,D}
T1: {B,C}
T2: {B,C,D}
T3: {E}
…
TN: {C,E,F}

Transitive closure

C

Use edge or inheritance edge

16

Important RTS Considerations

• RTS is safe if it selects to rerun all affected tests

• RTS is precise if it selects to rerun only affected tests

Run All Tests

Run Affected TestsAnalyzeFind Dependencies

End-to-End Time for RTS

Time Savings

For Ekstazi, includes time to run
and collect coverage/dependencies

17

Pros and cons of static vs. dynamic RTS?

18

Dynamic vs Static

• Dynamic:

• Pro

• Gets exactly what tests depends on

• Con

• Requires executing tests to collect dependencies (overhead)

• Static:

• Pro

• Quick analysis without needing to execute tests

• Con

• Can over-approximate affected tests due to static analysis

• May miss dependencies (reflection!) 19

Finer Granularity?

• Why not go even finer granularity of dependencies?

• Method-level?

• Statement-level?

• Collecting such dependencies (correctly) is harder

• More time to collect dependencies

• Is the extra time worth it?

• Can actually be unsafe!

20

Class-level vs Target/Module-level

• Class-level test selection should be more precise than target/module-
level test selection

• Selects to run all tests in affected test class, not all tests in affected
test target/module

• Why do companies not use class-level test selection?

23

Some RTS tools you can use today

• Built by researchers (click on links below)

• STARTS

• Ekstazi

• Built by industry (click on links below)

• Microsoft Test Impact Analysis

• OpenClover Test Optimization

24

Regression Testing Techniques

• Speed up regression testing

• Detect regression faults as soon as possible

• Reduce cost of testing

• Common techniques:

• Regression Test Selection

• Test-Suite Reduction (Minimization)

• Test-Case Prioritization

25

Test-Suite Reduction (TSR)

Rev 1733

Tests

Rev 1734

Change

T0
T1
T2
T3
…
TN

Tests

T0
T1
T2
T3
…
TN

T0 has same
“behavior” as T1

T2 does not help
the test suite overall

26

Test-Suite Reduction (TSR)

• Create a smaller, reduced test suite to run

• Run fewer tests overall across many revisions

• Analysis happens once/infrequently, so okay to spend more time

• Test suite should not miss to detect any faults

• Ideal: all tests that would fail and detect fault should be kept in the
reduced test suite

• Just as good: at least one test that can detect each fault should be
kept in the reduced test suite

27

TSR versus RTS

28

Test-Suite
Reduction

Regression
Test Selection

Can it miss failing tests
from the original test suite?

Yes No (if safe)

How often is analysis
performed?

Infrequently Every
revision

How are tests chosen
to run?

Redundancy
(one revision)

Changes
(two revisions)

TSR Process

29

C0 C1 C2 C3 C4

T0 X X

T1 X X

T2 X X

T3 X

T4 X X

T = Tests
C = Classes

(could be statements,
methods, branches, etc.)

M = Mutants
(could be other fault-like
requirements)

Heuristic: tests that cover the same elements
as the original test suite are just as good

Reduced Test Suite R = {T2,T4}

��� =
|�|

|�|
= 40%

Size Fault-Detection Capability

M1 M2 M3 M4

X

X X

X X

X X X

X

������� =
|��� � \ ��� � |

|���(�)|
= 25%

��� ∈ {�����, ������}

TSR Algorithms

• TSR is essentially set cover problem (NP-Complete)

• Algorithms to approximate finding minimal test suite:

• Greedy (Total vs Additional)

• GRE

• GE

• HGS

• ILP (Integer Linear Programming -> can get actual minimal)

30

Greedy Algorithm (Total)

• Greedy heuristic: select test that covers the most elements

• Iteratively make greedy choice test

• Tie-break: Random? Sorted by name?

• Stop when chosen tests cover all elements

31

Greedy (Total) Example

C0 C1 C2 C3 C4

T0 X X

T1 X X

T2 X X

T3 X

T4 X X

R = {T0}

req(O) = {C0,C1,C2,C4}

32

Greedy (Total) Example

C0 C1 C2 C3 C4

T0 X X

T1 X X

T2 X X

T3 X

T4 X X

R = {T0,T1}

req(O) = {C0,C1,C2,C4}

33

Greedy (Total) Example

C0 C1 C2 C3 C4

T0 X X

T1 X X

T2 X X

T3 X

T4 X X

R = {T0,T1,T2}

req(O) = {C0,C1,C2,C4}

34

Greedy (Total) Example

C0 C1 C2 C3 C4

T0 X X

T1 X X

T2 X X

T3 X

T4 X X

R = {T0,T1,T2,T4}

req(O) = {C0,C1,C2,C4}

35

Greedy Algorithm (Additional)

• Greedy heuristic: select test that covers the most uncovered elements

• Keep track of what has been covered so far and only consider the
yet-to-be covered ones

• The rest is the same as Greedy (Total)

36

Greedy (Additional) Example

C0 C1 C2 C3 C4

T0 X X

T1 X X

T2 X X

T3 X

T4 X X

R = {T0}

req(O) = {C0,C1,C2,C4}

37

Greedy (Additional) Example

C0 C1 C2 C3 C4

T0 X X

T1 X X

T2 X X

T3 X

T4 X X

R = {T0,T3}

req(O) = {C0,C1,C2,C4}

38

Greedy (Additional) Example

C0 C1 C2 C3 C4

T0 X X

T1 X X

T2 X X

T3 X

T4 X X

R = {T0,T3,T4}

req(O) = {C0,C1,C2,C4}

39

GRE

• Iteratively select essential tests

• An essential test uniquely covers some elements that no other test
can cover

• Select the “most” essential tests that cover most unique elements

• Selecting some essential tests may make other tests essential

• If no essential tests, then make the greedy (additional) choice

40

GRE Example

C0 C1 C2 C3 C4

T0 X X

T1 X X

T2 X X

T3 X

T4 X X

R = {T4}

req(O) = {C0,C1,C2,C4}

41

GRE Example

C0 C1 C2 C3 C4

T0 X X

T1 X X

T2 X X

T3 X

T4 X X

R = {T4,T2}

req(O) = {C0,C1,C2,C4}

42

Open Questions

• Can reduced test suite replace original test suite for future revisions?

• Can reduced test suite fail when original test suite does?

• Are removed tests truly redundant?

• Would you trust the algorithm in removing some of your tests?

• What heuristics should we use to determine redundancy?

• Does evaluation with seeded faults/mutants on current version
predict effectiveness in future?

43

Regression Testing Techniques

• Speed up regression testing

• Detect regression faults as soon as possible

• Reduce cost of testing

• Common techniques:

• Regression Test Selection

• Test-Suite Reduction (Minimization)

• Test-Case Prioritization

44

Test-Case Prioritization (TCP)

Rev 1733

Tests

Rev 1734

Change

T0
T1
T2
T3
…
TN

Tests

T3
…

T3 “better” at
finding faults

Change order
of tests

Run T3 first

45

Test-Case Prioritization (TCP)

• Run all tests, but in decreasing order of likelihood of revealing faults

• As tests run, debug and fix faults discovered by early test failures

• Runs all tests, so

• no risk of missing any test failure

• overall cost does not go down

• “Poor person’s” test selection: stop running when budget is exceeded

46

How to Evaluate TCP Orders?

• Similar to TSR, evaluate using other requirements, e.g.,
faults/mutants

• Measure “speed” of detecting all faults

47

APFD

• Average Percentage of Faults Detected (APFD)

1 −
∑ ���

�
���

� × �
+

1

2�

48

� = ������ �� �����
� = ������ �� ������
��� = �������� �� ���� �ℎ�� ������� ����� �

TCP Algorithms
• Prioritize based on coverage

• Greedy (Total vs Additional)

• Adaptive Random

• Prioritize based on source code

• Order tests based on source code differences

• Information retrieval

• Simple (yet effective!) prioritization

• Quickest test first

• Most frequently failing (historically) test first
49

Greedy TCP

• Similar to previous Greedy algorithms for TSR

• Greedy choice: test that covers the most (uncovered) elements

• Eventually, all tests still get run

50

Adaptive Random TCP

• Start with a random test

• Order next tests based on greatest “dissimilarity” with prioritized tests

• E.g., for coverage, which tests cover the most different elements
than any of the tests already prioritized?

• Measure distance between covered elements (e.g., Jaccard distance)

• Maximum distance? Minimum distance?

51

Adaptive Random TCP Example

C0 C1 C2 C3 C4

T0 X X

T1 X X

T2 X X

T3 X

T4 X X

2/3

0

1/2

1

0

1/2

2/3

0

1/2

[T1,T4,T0,T3,T2]

52

Information Retrieval

Documents

IR Model

Information Retrieval (IR)
Rank text documents based on relevance to a query

Query

1. Doc3
2. Doc0
3. Doc2
…

Ranked
Documents

53

Information Retrieval TCP

Tests

IR Model

Information Retrieval (IR)-Based TCP1

Rank tests based on relevance to changed code
Change-aware

Changes

1. T3
2. T0
3. T2
…

Ranked
Tests

1Saha et al., “An information retrieval approach for regression test prioritization based on program changes”, ICSE 2015
54

Open Questions

• How to best model likelihood of test failing?

• Is coverage a good heuristic?

• Is “diversity” what we want?

• Can it be done quickly? Change-aware?

• Should TCP be used in companies?

• Does it make sense to prioritize tests in order of likely failing?

• Does it make sense to have mindset of debugging as soon as test
fails, even as tests keep running?

55

Summary

• Regression testing can be a huge cost of software development

• Regression testing techniques aim to reduce that cost

• Many other techniques exist for reducing the cost

• Test parallelization

• Test mocking

• Test slicing

• Optimizing test placement

• Machine learning approach for RTS, TCP, etc.
56

