
CS 5154

Mutation Testing

Owolabi Legunsen

The following are modified versions of the publicly-available slides for Chapter 9
in the Ammann and Offutt Book, “Introduction to Software Testing”

(http://www.cs.gmu.edu/~offutt/softwaretest)

Some announcements
• All assigned work so far has been graded

– See scores on CMS

– Daniel (TA): announce office hours for questions/requests on Ed

• The scores so far represent ~35% of your course grade

– ~5 out of 40 percentage points for project

– ~30 out of 50 percentage points for homework

• There is still a LOT more points to work for in the course

– At least 2 more homework (~20%)

– Course project gets in full swing today (~35%)

– Keep working to participate in class and in your group (~10%)

• Past performance is not necessarily a good predictor of
future performance

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 2

Food for thought…
• You have written test that satisfy “strong” coverage criteria

• But, how do you know how good those tests are in terms
of their fault-detection capability?

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 3

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 4

Applying Syntax-based Testing to
Programs

• Syntax-based criteria originated with programs and have
been used mostly with programs

• BNF criteria are most commonly used to test compilers

• Mutation testing criteria are most commonly used for
unit testing and integration testing of classes

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 5

Instantiating Grammar-Based
Testing

Grammar-Based Testing

Program-based Integration Model-Based Input-Based

• Compiler testing

•Valid and invalid strings

Grammar

String
mutation

• Program mutation

•Valid strings

• Mutants are not tests

• Tests must kill mutants

• Input validation testing

• XML and others

•Valid strings

Grammar
• Test how classes interact

•Valid strings

• Mutants are not tests

• Must kill mutants

• Includes OO

String
mutation

• FSMs

• Model checking

•Valid strings

• Traces are tests

String
mutation

• Input validation

testing

• XML and others

• Invalid strings

• No ground strings

• Mutants are tests

String
mutation

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 6

BNF Testing for Compilers

• Testing compilers is very complicated

– Millions of correct programs !

– Compilers must recognize and reject incorrect programs

• BNF criteria can be used to generate programs to test all
language features that compilers must process

• A very specialized application; not discussed in CS5154

Some work on compiler testing

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 7

• Articles should be available for FREE @ Cornell Library
• Do NOT pay to read these articles

Program-based Grammars

• The original and most common application of syntax-based
testing is to modify programs

• Operators modify a ground string (program under test) to
create mutant programs

• Mutant programs must compile correctly (valid strings)

• Mutants are not tests, but used to find or evaluate tests

• Once mutants are defined, tests must be found to cause
mutants to fail when executed

• This is called “killing mutants”

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 8

Killing Mutants

• If mutation operators are designed well, the resulting
tests will be very powerful

• Different operators must be defined for different
programming languages and different goals

• Testers can keep adding tests until all mutants are killed

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 9

Given a mutant m M for a ground string program P
and a test t, t is said to kill m if and only if the output
of t on P is different from the output of t on m.

Some types of Mutants

• Dead mutant : A test case has killed it

• Stillborn mutant : Syntactically illegal

• Trivial mutant : Almost every test can kill it

• Equivalent mutant : No test can kill it (same behavior as
original)

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 10

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 11

Program-based Grammars

Original Method

int Min (int A, int B)
{

int minVal;
minVal = A;
if (B < A)
{

minVal = B;
}
return (minVal);

} // end Min

With Embedded Mutants

int Min (int A, int B)
{

int minVal;
minVal = A;

∆ 1 minVal = B;
if (B < A)

∆ 2 if (B > A)

∆ 3 if (B < minVal)
{

minVal = B;

∆ 4 Bomb ();

∆ 5 minVal = A;

∆ 6 minVal = failOnZero (B);
}
return (minVal);

} // end Min

6 mutants

Each represents a
separate program

Replace one variable
with another

Replaces operator

Immediate runtime
failure … if reached

Immediate runtime
failure if B==0, else
does nothing

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 12

Syntax-Based Coverage Criteria

Mutation Coverage (MC) : For each m  M, TR contains
exactly one requirement, to kill m.

• The RIPR model from chapter 2:

• Reachability : The test causes the faulty statement to be reached
(in mutation – the mutated statement)

• Infection : The test causes the faulty statement to result in an
incorrect state

• Propagation : The incorrect state propagates to incorrect output

• Revealability : The tester must observe part of the incorrect
output

• The RIPR model leads to two variants of mutation coverage …

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 13

Syntax-Based Coverage Criteria

1) Strongly Killing Mutants:

Given a mutant m  M for a program P and a test t, t is said to
strongly kill m if and only if the output of t on P is different from the
output of t on m

2) Weakly Killing Mutants:

Given a mutant m  M that modifies a location l in a program P,
and a test t, t is said to weakly kill m if and only if the state of the
execution of P on t is different from the state of the execution of m
on t immediately after l

• Weakly killing satisfies reachability and infection, but not
propagation

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 14

Weak Mutation

Weak Mutation Coverage (WMC) : For each m  M, TR
contains exactly one requirement, to weakly kill m.

• “Weak mutation” is so named because it is easier to kill mutants
under this assumption

• Weak mutation also requires less analysis

• A few mutants can be killed under weak mutation but not under
strong mutation (no propagation)

• Studies have found that test sets that weakly kill all mutants also
strongly kill most mutants

Weak Mutation In-class Exercise
Mutant 1 in the Min() example is:

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 15

int Min (int A, int B)
{

int minVal;
minVal = A;

∆ 1 minVal = B;
if (B < A)
{

minVal = B;
}
return (minVal);

} // end Min

In your breakout room :
1. Find a test that weakly kills the

mutant, but not strongly
2. Generalize : What must be true to

weakly kill the mutant, but not
strongly?

3. Try to write down the conditions
needed to (i) reach the mutated
statement, (ii) infect the program
state, and (iii) propagate to output

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 16

Weak Mutation In-class Exercise
minVal = A;

∆ 1 minVal = B;
if (B < A)

minVal = B;

2. Generalize : What must be true to weakly kill the
mutant, but not strongly?

Reachability : true // we always reach

Infection : A ≠ B // minVal has a different value

Propagation : (B < A) = false // Take a different branch

1. Find a test that weakly kills the
mutant, but not strongly

3. RIP conditions

A = 5, B = 3

B < A // minVal is set to B for both

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 17

Equivalent Mutation In-class Exercise

Mutant 3 in the Min() example is equivalent:

With one or two partners
1. Convince yourselves that this

mutant is equivalent
2. Briefly explain why
3. Try to prove the equivalence

Hint : Think about what must be
true to kill the mutant

int Min (int A, int B)
{

int minVal;
minVal = A;
if (B < A)

∆ 3 if (B < minVal)
{

minVal = B;
}
return (minVal);

} // end Min

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 18

Equivalent Mutation In-class Exercise
minVal = A;
if (B < A)

∆ 3 if (B < minVal)

1. Convince yourselves that this mutant is equivalent
2. Briefly explain why

3. Try to prove the equivalence
Hint : Think about what must be true to kill the mutant

A and minVal have the same value at the
mutated statement

Infection : (B < A) != (B < minVal)
Previous statement : minVal = A
Substitute : (B < A) != (B < A)

Contradiction … therefore, equivalent

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 19

1 boolean isEven (int X)

2 {

3 if (X < 0)

4 X = 0 - X;

∆ 4 X = 0;

5 if (double) (X/2) == ((double) X) / 2.0

6 return (true);

7 else

8 return (false);

9 }

Strong Versus Weak Mutation

Reachability : X < 0

Infection : X != 0

(X = -6) will kill mutant 4
under weak mutation

Propagation :

((double) ((0-X)/2) == ((double) 0-X) / 2.0)

!= ((double) (0/2) == ((double) 0) / 2.0)

That is, X is not even …

Thus (X = -6) does not kill the mutant under
strong mutation

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 20

Automated
steps

Testing Programs with Mutation

Input test
method

Prog Create
mutants

Run T
on P

Run mutants:

• schema-based

• weak

• selective

Eliminate
ineffective

TCs

Generate
test cases

Run
equivalence

detector

Threshold
reached ?

Define
threshold

no

P (T)
correct

?

yesFix
P

no

Industry is using mutation testing

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 21

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 22

Why Mutation Works

• This is not an absolute !

• The mutants guide the tester to an effective set of tests

• A very challenging problem :

– Find a fault and a set of mutation-adequate tests that do not find
the fault

• Of course, this depends on the mutation operators …

Fundamental Premise of Mutation Testing

If the software contains a fault, there will usually
be a set of mutants that can only be killed by a
test case that also detects that fault

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 23

Designing Mutation Operators

• At the method level, mutation operators for different
programming languages are similar

• Mutation operators do one of two things :

– Mimic typical programmer mistakes (incorrect variable name)

– Encourage common test heuristics (cause expressions to be 0)

• Researchers design lots of operators, then experimentally
select the most useful

Effective Mutation Operators
If tests that are created specifically to kill mutants
created by a collection of mutation operators O = {o1,
o2, …} also kill mutants created by all remaining
mutation operators with very high probability, then O
defines an effective set of mutation operators

Mutation Operators for Java
1. ABS –– Absolute Value Insertion

2. AOR –– Arithmetic Operator Replacement

3. ROR –– Relational Operator Replacement

4. COR –– Conditional Operator Replacement

5. SOR –– Shift Operator Replacement

6. LOR –– Logical Operator Replacement

7. ASR –– Assignment Operator Replacement

8. UOI –– Unary Operator Insertion

9. UOD –– Unary Operator Deletion

10. SVR –– Scalar Variable Replacement

11. BSR –– Bomb Statement Replacement

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 24

Full
definitions …

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 25

Mutation Operators for Java

Each occurrence of one of the arithmetic operators +,－,*,／, and % is
replaced by each of the other operators. In addition, each is replaced by the
special mutation operators leftOp, and rightOp.

2. AOR –– Arithmetic Operator Replacement:

Each arithmetic expression (and subexpression) is modified by the functions
abs(), negAbs(), and failOnZero().

1. ABS –– Absolute Value Insertion:

Examples:
a = m * (o + p);

∆1 a = abs (m * (o + p));
∆2 a = m * abs ((o + p));
∆3 a = failOnZero (m * (o + p));

Examples:
a = m * (o + p);

∆1 a = m + (o + p);
∆2 a = m * (o * p);
∆3 a = m leftOp (o + p);

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 26

Mutation Operators for Java (2)

Each occurrence of one of the relational operators (<, ≤, >, ≥, =, ≠) is replaced
by each of the other operators and by falseOp and trueOp.

3. ROR –– Relational Operator Replacement:

Examples:
if (X <= Y)

∆1 if (X > Y)
∆2 if (X < Y)
∆3 if (X falseOp Y) // always returns false

Each occurrence of one of the logical operators (and - &&, or - || , and with no
conditional evaluation - &, or with no conditional evaluation - |, not equivalent
- ^) is replaced by each of the other operators; in addition, each is replaced by
falseOp, trueOp, leftOp, and rightOp.

4. COR –– Conditional Operator Replacement:

Examples:
if (X <= Y && a > 0)

∆1 if (X <= Y || a > 0)
∆2 if (X <= Y leftOp a > 0) // returns result of left clause

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 27

Mutation Operators for Java (4)
5. SOR –– Shift Operator Replacement:

Each occurrence of one of the shift operators <<, >>, and >>> is replaced by
each of the other operators. In addition, each is replaced by the special
mutation operator leftOp.

Each occurrence of one of the logical operators (bitwise and - &, bitwise or
- |, exclusive or - ^) is replaced by each of the other operators; in addition,
each is replaced by leftOp and rightOp.

6. LOR –– Logical Operator Replacement:

Examples:
byte b = (byte) 16;
b = b >> 2;

∆1 b = b << 2;
∆2 b = b leftOp 2; // result is b

Examples:
int a = 60; int b = 13;
int c = a & b;

∆1 int c = a | b;
∆2 int c = a rightOp b; // result is b

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 28

Mutation Operators for Java (5)

Each occurrence of one of the assignment operators (=, +=, -=, *=, /=, %=, &=,
|=, ^=, <<=, >>=, >>>=) is replaced by each of the other operators.

7. ASR –– Assignment Operator Replacement:

8. UOI –– Unary Operator Insertion:

Each unary operator (arithmetic +, arithmetic -, conditional !, logical ~) is
inserted in front of each expression of the correct type.

Examples:
a = m * (o + p);

∆1 a += m * (o + p);
∆2 a *= m * (o + p);

Examples:
a = m * (o + p);

∆1 a = m * -(o + p);
∆2 a = -(m * (o + p));

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 29

Mutation Operators for Java (6)

Each unary operator (arithmetic +, arithmetic -, conditional !, logical~) is
deleted.

9. UOD –– Unary Operator Deletion:

Examples:
if !(X <= Y && !Z)

∆1 if (X > Y && !Z)
∆2 if !(X < Y && Z)

Each variable reference is replaced by every other variable of the appropriate
type that is declared in the current scope.

10. SVR –– Scalar Variable Replacement:

Examples:
a = m * (o + p);

∆ 1 a = o * (o + p);
∆ 2 a = m * (m + p);
∆ 3 a = m * (o + o);
∆ 4 p = m * (o + p);

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 30

Mutation Operators for Java (7)
11. BSR –– Bomb Statement Replacement:

Each statement is replaced by a special Bomb() function.

Example:
a = m * (o + p);

∆1 Bomb() // Raises exception when reached

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 31

Summary : Subsuming Other
Criteria

• Mutation is widely considered the strongest test criterion

– And most expensive !

– By far the most test requirements (each mutant)

– Usually the most tests

• Mutation subsumes other criteria by including specific
mutation operators

• Subsumption can only be defined for weak mutation –
other criteria only impose local requirements

– Node coverage, Edge coverage, Clause coverage

– General active clause coverage: Yes–Requirement on single tests

– Correlated active clause coverage: No–Requirement on test pairs

– All-defs data flow coverage

Next
• Demo of a tool that does Mutation Testing

• Project Sprint starts today

– Progress report due in ~3 weeks

– There will be one homework in that time span

• The rest of the course…

Introduction to Software Testing, edition 2 (Ch 9) © Ammann & Offutt 32

