
CS 5154

Logic Coverage

Owolabi Legunsen

The following are modified versions of the publicly-available slides for Chapter 8
in the Ammann and Offutt Book, “Introduction to Software Testing”

(http://www.cs.gmu.edu/~offutt/softwaretest)

Logic Coverage

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 2

Four Structures for
Modeling Software

Graphs LogicInput Space Syntax

Input

Models

Integ

Source

Applied
to

DNFSpecs

FSMsSource

Applied to

Use cases

Specs

Design

Source

Applied
to

Semantic Logic Criteria

• Logic expressions show up in many situations

• Covering logic expressions is required by the US Federal
Aviation Administration for safety critical software

• Logical expressions can come from many sources

– Decisions in programs

– FSMs and statecharts

– Requirements

• Tests are intended to choose some subset of the total
number of truth assignments to the expressions

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 3

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 4

Logic Predicates and Clauses
• Predicate : an expression that evaluates to a boolean value

• Predicates can contain
– boolean variables

– non-boolean variables that are related by >, <, ==, >=, <=, !=

– function calls that return booleans

• Internal structure is created by logical operators
– ¬ – the negation operator

– – the and operator

– – the or operator

– – the implication operator

– – the exclusive or operator

– – the equivalence operator

• A clause is a predicate with no logical operators

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 5

Example and Facts
• (a < b) f (z) D (m >= n*o) has four clauses:

– (a < b) – relational expression

– f (z) – boolean-valued function

– D – boolean variable

– (m >= n*o) – relational expression

• Most predicates have few clauses
– 88.5% have 1 clause

– 9.5% have 2 clauses

– 1.35% have 3 clauses

– Only 0.65% have 4 or more !

• Sources of predicates
– Decisions in programs

– Guards in finite state machines

– Decisions in UML activity graphs

– Requirements, both formal and informal

– SQL queries

from a study of non-FAA, 63 open-source
programs with >400,000 predicates

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 6

Humans have
trouble translating
from English to logic

Translating from English

• “I am interested in CS 5154 and CS 5150”

• course == cs5154 OR course == cs5150

• “If you leave before 6:30 AM, take Braddock to 495, if you leave
after 7:00 AM, take Prosperity to 50, then 50 to 495”

• (time < 6:30 path = Braddock) (time > 7:00 path = Prosperity)

• Hmm … this is incomplete !

• (time < 6:30 path = Braddock) (time >= 6:30 path = Prosperity)

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 7

Logic Coverage Criteria

• We use predicates in testing as follows :

– Developing a model of the software as a set of predicates

– Requiring tests to satisfy some combination of clauses

• Abbreviations that we will use in later slides:

– P is the set of predicates

– p is a single predicate in P

– C is the set of clauses in P

– Cp is the set of clauses in predicate p

– c is a single clause in C

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 8

Predicate and Clause Coverage

• The first (and simplest) two criteria require that each
predicate and each clause evaluate to both true and false

Predicate Coverage (PC) : For each p in P, TR contains two
requirements: p evaluates to true, and p evaluates to false.

Clause Coverage (CC) : For each c in C, TR contains two
requirements: c evaluates to true, and c evaluates to false.

• If predicates are conditions on edges, PC is equivalent to edge
coverage

• PC does not evaluate all the clauses, so …

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 9

Predicate Coverage Example

((a < b) D) (m >= n*o)

predicate coverage

Predicate = true

a = 5, b = 10, D = true, m = 1, n = 1, o = 1

= (5 < 10) true (1 >= 1*1)

= true true TRUE

= true

Predicate = false

a = 5, b = 10, D = true, m = 0, n = 1, o = 1

= (5 < 10) true (0 >= 1*1)

= true true FALSE

= false

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 10

Clause Coverage Example

((a < b) D) (m >= n*o)

Clause coverage

Two tests

(a < b) = true

a = 5, b = 10

(a < b) = false

a = 10, b = 5

D = true

D = true

D = false

D = false

m >= n*o = true

m = 1, n = 1, o = 1

m >= n*o = false

m = 1, n = 2, o = 2

true cases
1) a = 5, b = 10, D = true, m = 1, n = 1, o = 1

false cases

2) a = 10, b = 5, D = false, m = 1, n = 2, o = 2

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 11

Problems with PC and CC

• PC does not fully exercise all the clauses, especially in the
presence of short circuit evaluation

• CC does not always ensure PC

– That is, we can satisfy CC without causing the predicate to be
both true and false

– Example: a ∨ b

– This is definitely not what we want !

• The simplest solution is to test all combinations …

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 12

Combinatorial Coverage
• CoC requires every possible combination

• Sometimes called Multiple Condition Coverage

Combinatorial Coverage (CoC) : For each p in P, TR has
test requirements for the clauses in Cp to evaluate to
each possible combination of truth values.

a < b D m >= n*o ((a < b) D) (m >= n*o)

1 T T T T

2 T T F F

3 T F T T

4 T F F F

5 F T T T

6 F T F F

7 F F T F

8 F F F F

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 13

Combinatorial Coverage
• CoC is simple, neat, clean, and comprehensive …
• But quite expensive!

• 2N tests, where N is the number of clauses
– Impractical for predicates with more than 3 or 4 clauses

• The literature has lots of suggestions – some confusing

• The general idea is simple:

Test each clause independently from the other clauses

• Getting the details right is hard

• What exactly does “independently” mean ?

• The book presents this idea as “making clauses active” …

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 14

Active Clauses
• Clause coverage has a weakness : The values do not

always make a difference

• Consider the first test for clause coverage, which caused
each clause to be true:

– ((5 < 10) true) (1 >= 1*1)

– Only the last clause counts !

• To really test the results of a clause, the clause should be
the determining factor in the value of the predicate

Determination : A clause ci in predicate p, called the major

clause, determines p if and only if the values

of the remaining minor clauses cj are such

that changing ci changes the value of p

• This is considered to make the clause active

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 15

Determining Predicates

• Goal : Find tests for each clause when the clause
determines the value of the predicate

• This goal is formalized in a family of criteria that have
subtle, but very important, differences

P = A B

if B = true, p is always true.

so if B = false, A determines p.

if A = false, B determines p.

P = A B

if B = false, p is always false.

so if B = true, A determines p.

if A = true, B determines p.

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 16

p = a b

1) a = true, b = false

2) a = false, b = false

3) a = false, b = true

4) a = false, b = false

Active Clause Coverage

• This is a form of MCDC, which is required by the FAA
for safety critical software

• Ambiguity : Do the minor clauses have to have the same
values when the major clause is true and when it is false?

Active Clause Coverage (ACC) : For each p in P and each
major clause ci in Cp, choose minor clauses cj, j != i, so

that ci determines p. TR has two requirements for each

ci : ci evaluates to true and ci evaluates to false.

Duplicate

a is major clause

b is major clause

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 17

Resolving the Ambiguity

• This question caused confusion among testers for years

• Considering this carefully leads to three separate criteria :

– Minor clauses do not need to be the same

– Minor clauses do need to be the same

– Minor clauses force the predicate to become both true and false

p = a (b c)

Major clause : a

a = true, b = false, c = true

a = false, b = false, c = falsec = false

Is this allowed ?

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 18

General Active Clause Coverage

• This is complicated !

• We can satisfy GACC without satisfying predicate coverage

• We want to cause predicates to be both true and false

General Active Clause Coverage (GACC) : For each p in P
and each major clause ci in Cp, choose minor clauses cj, j != i,
so that ci determines p. TR has two requirements for each ci
: ci evaluates to true and ci evaluates to false. The values
chosen for the minor clauses cj do not need to be the same
when ci is true as when ci is false, that is, cj(ci = true) = cj(ci =
false) for all cj OR cj(ci = true) != cj(ci = false) for all cj.

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 19

Restricted Active Clause Coverage

• This was a common interpretation by aviation developers

• RACC often leads to infeasible test requirements

• There is no logical reason for such a restriction

Restricted Active Clause Coverage (RACC) : For each p in P
and each major clause ci in Cp, choose minor clauses cj, j != i,
so that ci determines p. TR has two requirements for each ci:
ci evaluates to true and ci evaluates to false. The values
chosen for the minor clauses cj must be the same when ci is
true as when ci is false, that is, it is required that cj(ci = true) =
cj(ci = false) for all cj.

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 20

Correlated Active Clause Coverage

• A more recent interpretation

• Implicitly allows minor clauses to have different values

• Explicitly satisfies (subsumes) predicate coverage

Correlated Active Clause Coverage (CACC) : For each p
in P and each major clause ci in Cp, choose minor clauses
cj, j != i, so that ci determines p. TR has two
requirements for each ci : ci evaluates to true and ci
evaluates to false. The values chosen for the minor
clauses cj must cause p to be true for one value of the
major clause ci and false for the other, that is, it is
required that p(ci = true) != p(ci = false).

CACC and RACC

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 21

a b c a (b c)

1 T T T T

2 T T F T

3 T F T T

4 T F F F

5 F T T F

6 F T F F

7 F F T F

8 F F F F

T

T

T

T

F

F

F

F

a

major clause

Pa : b=true or c = true

CACC can be satisfied by choosing any
of rows 1, 2, 3 AND any of rows 5, 6, 7 –
a total of nine pairs

a b c a (b c)

1 T T T T

2 T T F T

3 T F T T

4 T F F F

5 F T T F

6 F T F F

7 F F T F

8 F F F F

T

T

T

T

F

F

F

F

a

RACC can only be satisfied by
row pairs (1, 5), (2, 6), or (3, 7)

Only three pairs

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 22

Inactive Clause Coverage
• The active clause coverage criteria ensure that “major”

clauses do affect the predicates

• Inactive clause coverage takes the opposite approach –
major clauses do not affect the predicates

Inactive Clause Coverage (ICC) : For each p in P and each
major clause ci in Cp, choose minor clauses cj, j != i, so that ci

does not determine p. TR has four requirements for each ci :
(1) ci evaluates to true with p true, (2) ci evaluates to false
with p true, (3) ci evaluates to true with p false, and (4) ci

evaluates to false with p false.

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 23

General and Restricted ICC

• Unlike ACC, the notion of correlation is not relevant

– ci does not determine p, so cannot correlate with p

• Predicate coverage is always guaranteed

General Inactive Clause Coverage (GICC) : For each p in P and each

major clause ci in Cp, choose minor clauses cj , j != i, so that ci does not
determine p. The values chosen for the minor clauses cj do not need to
be the same when ci is true as when ci is false, that is, cj(ci = true) = cj(ci =
false) for all cj OR cj(ci = true) != cj(ci = false) for all cj.

Restricted Inactive Clause Coverage (RICC) : For each p in P and each
major clause ci in Cp, choose minor clauses cj, j != i, so that ci does not
determine p. The values chosen for the minor clauses cj must be the
same when ci is true as when ci is false, that is, it is required that cj(ci =
true) = cj(ci = false) for all cj.

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 24

Infeasibility & Subsumption

• Consider the predicate:

(a > b b > c) c > a

• (a > b) = true, (b > c) = true, (c > a) = true is infeasible

• As with graph-based criteria, infeasible test requirements
have to be recognized and ignored

• Recognizing infeasible test requirements is hard, and in
general, undecidable

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 25

Logic Criteria Subsumption

Clause
Coverage

CC

Predicate
Coverage

PC

Combinatorial
Clause Coverage

COC

Restricted Active
Clause Coverage

RACC

Restricted Inactive
Clause Coverage

RICC

General Active
Clause Coverage

GACC

Correlated Active
Clause Coverage

CACC

General Inactive
Clause Coverage

GICC

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 26

Making Clauses Determine a Predicate

• Finding values for minor clauses cj is easy for simple
predicates

• But how to find values for more complicated predicates ?

• Definitional approach:

– pc=true is predicate p with every occurrence of c replaced by true

– pc=false is predicate p with every occurrence of c replaced by false

• To find values for the minor clauses, connect pc=true and
pc=false with exclusive OR

pc = pc=true pc=false

• After solving, pc describes exactly the values needed for c
to determine p

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 27

Examples

p = a b
pa = pa=true pa=false

= (true b) XOR (false b)

= true XOR b

= ¬ b

p = a b
pa = pa=true pa=false

= (true b) (false b)

= b false

= b

p = a (b c)
pa = pa=true pa=false

= (true (b c)) (false (b c))

= true (b c)

= ¬ (b c)

= ¬ b ¬ c

• “NOT b NOT c” means either b or c can be false

• RACC requires the same choice for both values of a, CACC does not

XOR Identity Rules

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 28

Exclusive-OR (xor,) means both cannot be true
That is, A xor B means

“A or B is true, but not both”

p = A A b

= A ¬ b

p = A A b

= ¬ A b

p = A xor (A and b)

= A and !b

p = A xor (A or b)

= !A and b

with fewer symbols …

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 30

A More Subtle Example

p = (a b) (a ¬ b)
pa = pa=true pa=false

= ((true b) (true ¬ b)) ((false b) (false ¬ b))

= (b ¬ b) false

= true false

= true

• a always determines the value of this predicate

• b never determines the value – b is irrelevant !

p = (a b) (a ¬ b)
pb = pb=true pb=false

= ((a true) (a ¬ true)) ((a false) (a ¬ false))

= (a false) (false a)

= a a

= false

b & c are the same, a differs, and p
differs … thus TTT and FTT cause a
to determine the value of p

Again, b & c are the same, so TTF
and FTF cause a to determine the
value of p

Tabular Method for Determination

• The math sometimes gets complicated

• A truth table can sometimes be simpler

• Example

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 31

a b c a (b c)

1 T T T T

2 T T F T

3 T F T T

4 T F F F

5 F T T F

6 F T F F

7 F F T F

8 F F F F

pa pb pc
In sum, three
separate pairs of
rows can cause a
to determine
the value of p,
and only one
pair each for b
and c

Finally, this third pair, TFT and FFT,
also cause a to determine the value
of p

For clause b, only one pair, TTF
and TFF cause b to determine the
value of p

Likewise, for clause c, only one
pair, TFT and TFF, cause c to
determine the value of p

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 32

Logic Coverage Summary
• Predicates are often very simple—in practice, most have

less than 3 clauses

– In fact, most predicates only have one clause !

– With only one clause, PC is enough

– With 2 or 3 clauses, CoC is practical

– Advantages of ACC & ICC criteria significant for large predicates
• CoC is impractical for predicates with many clauses

• Control software often has many complicated predicates,
with lots of clauses

Next

• Applying Logic Coverage to source code

• Group assignments, start working on your projects

• Reminder: HW2 is due on Monday 3/29 at 9:30am EST

Introduction to Software Testing, Edition 2 (Ch 8) © Ammann & Offutt 34

