
Introduction to Software Testing, Edition 2 (Ch 5) © Ammann & Offutt 1

Subsumption revisited

• Criteria Subsumption : Test criterion C1 subsumes C2 iff
every set of test cases that satisfies C1 also satisfies C2

• Question from last class:

Subsumption ≠ Subset

• Subsumption cannot always be explained using subsets, e.g.,

– C1: {Lemon, Pistachio, Cantaloupe, Pear, Tangerine, Apricot}

– C2: {Yellow, Green, Orange, While}

• From last class: C1 subsumes C2. But TR(C1) ⊉ TR (C2)

• There is a many-to-one mapping from TR(C1) to TR(C2)

2

More on Subsumption
• Can we always show subsumption as subsets or many-to-

one mappings?

• C1 = {program branches} = {B, !B}

• C2 = {program statements} = {line 1, line 2, line 3, line 4}

Introduction to Software Testing, Edition 2 (Ch 6) © Ammann & Offutt 3

int stringFactor(String i, int n) {
1. if (i != null || n !=0) // --> B
2. return i.length()/n;
3. else
4. return -1;

}

Introduction to Software Testing, Edition 2 (Ch 5) © Ammann & Offutt 4

Subsumption: wrong definition?

• Criteria Subsumption : Test criterion C1 subsumes C2 iff
every set of test cases that satisfies C1 also satisfies C2

• Comment from last class: definition should be, “C1
subsumes C2 iff every set of test cases that satisfies C2
also satisfies C1”

• Which definition do you now think is correct?

• Hint: replace C1 with “Branch Coverage” and C2 with
“Statement Coverage”

Summary on subsumption
• Formally, subsumption is a relation between two sets of

test requirements

• Goal: given a test set T that satisfies criterion C1, what can
we say about T with respect to another criterion C2?

• There are many ways to show a subsumption relation

– Subset

– Many-to-one mapping

– One-to-one mapping

– …

Introduction to Software Testing, Edition 2 (Ch 6) © Ammann & Offutt 5

Hands-on Demo
• Maven

Introduction to Software Testing, Edition 2 (Ch 5) © Ammann & Offutt 6

CS 5154

Input Space Partitioning

Owolabi Legunsen

The following are modified versions of the publicly-available slides for Chapter 6
in the Ammann and Offutt Book, “Introduction to Software Testing”

(http://www.cs.gmu.edu/~offutt/softwaretest)

1st of four structures we’ll cover

Introduction to Software Testing, Edition 2 (Ch 6) © Ammann & Offutt 9

Four Structures for
Modeling Software

Graphs LogicInput Space Syntax

Input

Models

Integ

Source

Applied
to

DNFSpecs

FSMsSource

Applied to

Use cases

Specs

Design

Source

Applied
to

© Ammann & Offutt 10

Why Input Space Partitioning?
• No implementation knowledge is needed

– Just the input space

• Easy to apply without automation

• Can adjust the procedure to get more or fewer tests

• Equally applicable at several levels of testing

– Unit, Integration, System, etc.

Introduction to Software Testing, Edition 2 (Ch 6)

Recommended Reading

11

Input Domains and ISP
• Input domain: all possible inputs to a program

– Most input domains are so large that they are effectively infinite

• Input parameters define the scope of the input domain
– Parameter values to a method, data from a file, global variables,

user inputs

• ISP: First partition input domain into regions (called blocks)

– values in each block are assumed equally useful for testing

• ISP: Then choose at least one value from each block

Introduction to Software Testing, Edition 2 (Ch 6) © Ammann & Offutt 12

Input domain: Alphabetic letters

Partitioning characteristic: Case of letter

• Block 1: upper case

• Block 2: lower case

