
CS 5154
Integrating Runtime Verification

with Software Testing

Owolabi Legunsen

Spring 2021

Software has become
more critical to most
aspects of our daily lives

2

The risk posed by software failure has also grown

3

Continuous Integration (CI): rapid test/release cycles

Developers

Version Control

C
o

m
m

it

C
h

an
ge

s

1

2

5

Fetch Changes

6 Release/Deploy

Builds per day:
• Facebook: 60K*
• Google: 17K
• HERE: 100K
• Microsoft: 30K
• Single open-source

projects: up to 80

Releases per day
• Etsy: 50

4

CI
Server

* Android only; Facebook: https://bit.ly/2CAPvN9 ; Google: https://bit.ly/2SYY4rR ;
HERE: https://oreil.ly/2T0EyeK ; Microsoft: https://bit.ly/2HgjUpw ; Etsy: https://bit.ly/2IiSOJP ;

?

Pass/Fail

?

* Android only; Facebook: https://bit.ly/2CAPvN9 ; Google: https://bit.ly/2SYY4rR ;
HERE: https://oreil.ly/2T0EyeK ; Microsoft: https://bit.ly/2HgjUpw ; Etsy: https://bit.ly/2IiSOJP ;Developers

Version Control

C
o

m
m

it

C
h

an
ge

s

1

2

5

Fetch Changes

6 Release/Deploy

Builds per day:
• Facebook: 60K*
• Google: 17K
• HERE: 100K
• Microsoft: 30K
• Single open-source

projects: up to 80

Releases per day
• Etsy: 50

5

CI
Server

Pass/Fail

P1: Passing tests miss bugs

S1: Find more bugs from tests
that developers already have

P2. Failed tests, no buggy changes

S2: Find bugs more reliably by
detecting such failures

P3. Testing can be very slow

S3: Find bugs faster
by speeding up testing

P4. How to test in new domains?

S4: Find bugs in emerging
application domains

Several important problems exist in these cycles

?

* Android only; Facebook: https://bit.ly/2CAPvN9 ; Google: https://bit.ly/2SYY4rR ;
HERE: https://oreil.ly/2T0EyeK ; Microsoft: https://bit.ly/2HgjUpw ; Etsy: https://bit.ly/2IiSOJP ;Developers

Version Control

C
o

m
m

it

C
h

an
ge

s

1

2

5

Fetch Changes

6 Release/Deploy

Builds per day:
• Facebook: 60K*
• Google: 17K
• HERE: 100K
• Microsoft: 30K
• Single open-source

projects: up to 80

Releases per day
• Etsy: 50

6

CI
Server

Pass/Fail

Problem: Passing tests miss bugs

Our Solution: Use Runtime Verification to find more bugs from
tests that developers already have

The problem that we’ll talk about today

• Integrating a lightweight formal method called
runtime verification with everyday software testing

• Benefits (find more bugs earlier)

• Challenges (high overheads)

• Progress on resolving some of the challenges

7

In this lecture

Introduction to Runtime Verification (RV)

• RV dynamically checks program executions against formal properties,
whose violations can help find bugs
• a.k.a. runtime monitoring, runtime checking, monitoring-oriented

programming, typestate checking, etc.

• RV has been around for decades, now has its own conference

•Many RV tools:

8

One reason why RV is appealing

C
o

rr
ec

tn
es

s
G

u
ar

an
te

e

Scale

Formal Verification:
Prove mathematically
that a program is correct

RV: Check that program
executions are correct

Testing: Check if subset of program
inputs gives correct output

9

Can RV help bring some of the mathematical rigor of
formal verification to everyday software development?

No study of RV during testing of real-world software

Developers

Version Control

C
o

m
m

it

C
h

an
ge

s

1

2

5

Fetch Changes

6 Release/Deploy

10

CI
Server

?

Pass/Fail

All prior RV techniques
targeted post-release runs

Yet, testing provides
lots of runs for
runtime verification

No previous RV techniques for evolving systems

Developers

Version Control

C
o

m
m

it

C
h

an
ge

s

1

2

5

Fetch Changes

6 Release/Deploy

11

CI
Server

?

Pass/Fail

All prior RV techniques
would wastefully re-
monitor code
unaffected by changes

JavaMOP: a representative RV tool

Code + Tests
JavaMOP

Violations

Properties

12

Example property: Collection_SynchronizedCollection (CSC)

13

CSC property in JavaMOP

14

Parameters

Events: related method
calls or field accesses

1. Collections_SynchronizedCollection (Collection c, Iterator i) {
2. Collection c;
3. creation event sync after() returning (Collection c):
4. call (Collections.synchronizedList(Collection)) ...
5. event syncMk after (Collection c) returning (Iterator i):
6. call (Collection+.iterator()) && target (c) && condition (Thread.holdsLock(c)) {}
7. event asyncMk after (Collection c) returning (Iterator i):
8. call (Collection+.iterator() && target(c) && condition (!Thread.holdsLock(c)) {}
9. event access before (Iterator i):
10. call (Iterator.*(..)) && target (i) && condition (!Thread.holdsLock(this.c)) {}
11. ere : (sync asyncMk) | (sync syncMk access)
12. @match { RVMLogging.out.println (Level.CRITICAL, __DEFAULT_MSG); … }
13.}

Specification: logical
formula over the events

Handler: action taken
after specification is

violated

Other example properties

Property Name Nature of bug found

StringTokenizer_HasMoreElements Crash: don’t fetch elements
from an empty collection

ByteArrayOutputStream_FlushBeforeRetrieve Correctness: don’t read streams
with incomplete data

InetSocketAddress_Port Performance: don’t use too
many ephemeral ports

15

…
65: im = Collections.synchronizedList(…);
66: for (IInvokedMethod iim : im) { … }
…

SuiteHTMLReporter

TestOnClassListener

TestNG example: from RV of test executions to bugs

JavaMOP

CSC was violated on… SuiteHTMLReporter.java:66… a
synchronized collec�on was accessed in thread−unsafe manner

Violations

…
CSC

Manual inspection:
multiple threads can
access “im”

16

How JavaMOP works

17

Code
+

Tests

Instrumentation
Instrumented
Code + Tests

Execution

Monitors

Events

Violations

Properties

CSC

Collections.synchronizedList()
Collection+.iterator()

Example: finding bugs from RV of test executions

65. im = Collections.synchronizedList(…);
66. for (IInvokedMethod iim : im) { … }

AspectJ

im = Collections.synchronizedList(…);
CSCMonitor monitor = new
CSCMonitor();
monitor.syncEvent(im);
Iterator i = im.iterator();
monitor.asyncMkEvent(im, i);
while (i.hasNext()) {
IInvokedMethod iim = i.next(); … }

Execution

Monitors

sync(im),
asyncMk(im),

….

1. CSC (Collection c, Iterator i) {
2. Collection c;
3. creation event sync after() returning (Collection c):
4. call (Collections.synchronizedList(Collection)) || ... { this . c = c ; }
5. event asyncMk after (Collection c) returning (Iterator i):
6. call (Collection+.iterator() && target(c) && !Thread.holdsLock(c) {}

...
11. ere : (sync asyncMk) | ….
12. @match { RVMLogging.out.println (Level.CRITICAL, __DEFAULT_MSG); … }}

CSC was violated on… (SuiteHTMLReporter.java:65)…
synchronized collec�on accessed in thread−unsafe
manner

Spec Violations

How is RV different from testing?

19

Code
+

Tests

Instrumentation
Instrumented
Code + Tests

Execution

Monitors

Events

Violations

Properties

Specified independent of code+tests
Specified in mathematical logic

Automatically
generated to check

the properties

Contribution: large-scale study of RV during testing

We conducted our study to answer the following questions:

• How many additional bugs does RV help find during testing?

• How high is RV overhead during testing?

• How often do property violations not indicate true bugs?

20

Properties used in our study

• JavaMOP supports different formalism: LTL, CFG, FSM, ERE, SRS, etc.

21

• Formal specifications of correct standard Java library API usage

• Manually written[1] or automatically mined [2] by other researchers

• 161 manually written properties from 4 packages: java.lang, java.io,
java.util, and java.net

[1] Q. Luo, Y. Zhang, C. Lee, D. Jin, P. O. Meredith, T. F. Serbanuta, and G. Rosu. RV-Monitor: Efficient parametric runtime verification with simultaneous
properties. RV 2014
[2] M. Pradel, C. Jaspan, J. Aldrich, and T. R. Gross. Statically checking API protocol conformance with mined multi-object specifications. ICSE 2012

Overview of our study

22

JavaMOP

Violations

Manual
Inspection

Bugs Not Bugs

Submit Pull Requests

Code + Tests Properties
218 projects, 20K+ tests 199

6167

1379

198 1181

95

Some of the projects where we found bugs

23

Summary of study results

• How many additional bugs does RV help find during testing?

• How high is RV overhead during testing?

• How often do property violations not indicate true bugs?

24

Total bugs found so far: 198

86% of ~1.4K violations were not bugs

Up to 40x

So far: 95 bugs reported, 74 accepted, 3 rejected

• e.g., 1min to 40min, 30mins to 10hours

Why are some violations (not) bugs?

25
[1] S. Thummalapenta and T. Xie. Alattin: Mining Alternative Patterns for Detecting Neglected Conditions. ASE 2009

65: im = Collections.synchronizedList(…);
66: + synchronized (im) {
67: for (IInvokedMethod iim : im) { … }
68: + }

65: im = Collections.synchronizedList(…);
66: for (IInvokedMethod iim : im) { … }

Pull Request

TestNG accepted our pull requests for 13 CSC violations

XStream developers rejected our pull request for similar CSC bug
• “...there’s no need to synchronize it... as explicitly stated …,

XStream is not thread-safe ... this is documented …”

Properties do not capture enough program context[1]

Logistics

• Homework 4 is released
• Work in your project group

• Due 5/10/2021

• Project Sprint 2 will be released soon
• Focus: using testing JavaMOP and/or Randoop

• Due 5/14/2021 (last day of classes)

26

Reflecting on the study results

• RV overhead is still high despite decades of tremendous research progress
• Overhead in machine time (up to 40x)

• Overhead in developer time to inspect violations (1200 hours / 1379 violations)

• Yet, RV helped find many bugs from existing tests

• Do we need faster RV algorithms and better properties? Yes!

• But what if we also consider how developers are likely to use RV?

27

RV during Continuous Integration (CI)?

Developers

Version Control

C
o

m
m

it

C
h

an
ge

s

1

2

5

Fetch Changes

6 Release/Deploy

Builds per day:
• Facebook: 60K*
• Google: 17K
• HERE: 100K
• Microsoft: 30K
• Single open-source

projects: up to 80

Releases per day
• Etsy: 50

28

CI
Server

?

Pass/Fail

* Android only; Facebook: https://bit.ly/2CAPvN9 ; Google: https://bit.ly/2SYY4rR ;
HERE: https://oreil.ly/2T0EyeK ; Microsoft: https://bit.ly/2HgjUpw ; Etsy: https://bit.ly/2IiSOJP ;

• Observation: All prior
RV techniques are
evolution-unaware
(Base RV)

• Base RV would re-
incur entire overhead
if re-run after each
code change

Developers

Version Control

C
o

m
m

it

C
h

an
ge

s

1

2

5

6 Release/Deploy

29

CI
Server

?

Pass/Fail

New Idea: Focus RV on code changes?

Code changes are
typically very small
relative to entire
code base

Fetch Changes

0.97% of classes
changed on average
in our experiments

Contribution: Evolution-aware Runtime Verification

• Goal: leverage software evolution to scale RV better during testing

• Intended benefits:
1. Reduce accumulated runtime overhead of RV across multiple program versions

2. Show developers only new violations after code changes

• Complementary to techniques that improve RV on single program versions
• Faster RV algorithms for single program versions

• Running tests in parallel

• Improve properties to have fewer false alarms

30

We proposed three evolution-aware RV techniques

1. Regression Property Selection (RPS)
• Re-monitors only properties that can be violated in parts of code affected by changes

2. Violation Message Suppression (VMS)
• Shows only new violations after code changes

3. Regression Property Prioritization (RPP)
• Splits RV into two phases:
• critical phase: check properties more likely to find bugs on developer’s critical path
• background phase: monitor other properties outside developer’s critical path

31
The three techniques can be used together

Evolution-aware RV in JavaMOP

32

Code
+

Tests

Instrumentation
Instrumented
Code + Tests

Execution

Monitors

Events

Violations

Properties

Code
+

Tests

Regression Property Selection (RPS)

Violation Message
Suppression (VMS)

Regression Property Prioritization (RPP)

Evolution-aware RV – Result Overview

• RPS and RPP significantly reduced accumulated runtime overhead of Base RV

• Average: from 9.4x to 1.8x

• Maximum: from 40.5x to 4.2x

• VMS showed 540x fewer violations than Base RV

• RPS did not miss any new violation after code changes

33

Base RV during software evolution

34

A

TC TE

Code

Tests P2

P1

CSC

Properties

• Base RV re-monitors all properties after every code change
• No knowledge of dependencies in the code, or between code and properties

Old Version: monitor CSC, P1, P2

New Version: re-monitor CSC, P1, P2

B

C

D

E

B

Δ = {B}

Regression Property Selection (RPS) Overview

Selected subset of properties are those that may generate new violations

35

RPS
Old version of Code+Tests

All available properties

Subset of all
available properties

New version of Code+Tests

Regression Property Selection (RPS) – step 1

36

A

TC

B D

E

TE

C

B

Re-monitors only properties that can be violated in parts of code affected by changes

Inheritance or Use

P2

P1

May Generate events for

CSC
Step 1a: Build Class Dependency Graph
(CDG) for new version

Step 1b: Map classes to properties for
which the classes may generate events

Δ = {B}

Regression Property Selection (RPS) – step 2

37

A

TC

B D

E

TE

C

B

Re-monitors only properties that can be violated in parts of code affected by changes

Inheritance or Use

P2

P1

May Generate events for

CSC
Affected classes: those that generate events that
can lead to new violations after code changes

Step 2: Compute affected classes

Class X is affected if

1. X changed or is newly added

2. X transitively depends on a changed class, or

3. Class Y that satisfies (1) or (2) can transitively
pass data to X

C

TC

D

A

Δ = {B}

Regression Property Selection (RPS) – steps 3 & 4

38

A

TC

B D

E

TE

C

B

Re-monitors only properties that can be violated in parts of code affected by changes

Inheritance or Use

P2

P1

May Generate events for

CSC

C

TC

D

Step 3: Select affected properties – those for
which affected classes may generate events

Step 4: Re-monitor affected properties: {CSC, P1}

• P2 is NOT re-monitored in the new version
• Affected classes cannot generate P2 events
• Saves time to monitor P2; does not show old P2 violations

A

Δ = {B}

Total RPS time must be less than Base RV time

39

Step 2: Compute affected classes

Step 3: Select affected properties

Step 4: Re-monitor only affected properties

Step 1a: Build Class Dependency Graph (CDG) for new version

Step 1b: Map classes to properties for which they may generate events
Analysis

Re-monitoring

Base RV (Re-monitor all properties)

Analysis Re-monitoring
Time Savings

Total Time for RPS

Static and Fast

4.3% of RPS time

RPS Safety and Precision - Definitions

• Evolution-aware RV is safe if it finds all new violations that base RV finds

• Evolution-aware RV is precise if it finds only new violations that base RV finds

• RPS discussed so far is safe but not precise
• Safe modulo CDG completeness, test-order dependencies, dynamic language features

40

Results of Safe RPS – ps1

41How can we improve these results?

• 20 versions each of 10 GitHub projects
• Average project size: 50 KLOC
• Average test running time without RV: 51 seconds

RPS variants that use fewer affected classes
Goal: Reduce RV overhead by varying “what” set of affected classes is used
to select properties

A

TC

B D

E

TE

C

B

Inheritance or Use

P2

P1

May Generate events for

CSC

C

TC

D

A What classes are used to select
properties?

ps1

Changed classes (i.e., Δ) 

Dependents of Δ 

Dependees of Δ 

Dependees of Δ’s Dependents 

ps2









ps3









Δ = {B}

42

Using fewer affected classes can be (un)safe, e.g., ps2

A

TC

B D

E

TE

C

B

Inheritance or Use

P2

P1

May Generate events for

CSC

C

TC

D

A

class D {
static void foo(boolean b) {

if (b) { // P1 events}
else { // No P1 events}

}}

class C {
void getF() {

D.foo(B.b);
}}

class B {
- public static boolean b = false;

+ public static boolean b = true;
}Δ = {B}

43

ps2 can be safe if C does not pass data to D

RPS variants that instrument fewer classes
Goal: Reduce RV overhead by varying “where” selected properties are
instrumented

A

TC

B D

E

TE

C

B

Inheritance or Use

P2

P1

May Generate events for

CSC

C

TC

D

A Where selected properties are
instrumented (i ∈ {1,2,3})

psi

affected(Δ) 

affected(Δ)c 

third-party libraries 

ps�
�







ps�
�







ps�
��







Δ = {B}

44

• have fewer violations
• ~36% of RV overhead
• excluding them can be safe

RPS Variants – Expected Efficiency/Safety Tradeoff

45

“more efficient than” “less safe than”

2 Strong RPS variants are safe under certain assumptions: ��� and ���
�

10 Weak RPS variants are unsafe; they trade safety for efficiency

RPS Results – average runtime overhead

46
Base RV RPS Variants

47

Excluding third-party libraries does not miss many violations on average

Base RV RPS Variants

RPS Results – no. of violations reported

RPS Results – precision and safety

• VMS is precise – it shows only new violations
• RPS is not precise – it shows two orders of magnitude more violations than VMS

• We manually confirmed whether all RPS variants find all violations from VMS

• Surprisingly, all weak RPS variants were safe in our experiments

48

Why weak RPS variants were safe in our experiments

• 75% of event traces observed by monitors involved only one class

• 32 of 33 new violations were due to changes whose effects are in ps3

• Additional scenarios captured by ps1 and ps2 did not lead to new violations

• We may have missed old violations when not tracking ps1 or ps2 scenarios

• 87% of old violations missed by excluding third-party libraries did not involve
any event from the code

49

Regression Property Prioritization (RPP)

Combining RPS+RPP reduced RV overhead to 1.8x (from 9.4x) 50

All
properties

M

N

M+1

N - 1

V1 V2 V3Critical
phase

Background
phase

…

…

Where do we (want to) go from here?

C
o

rr
ec

tn
es

s
G

u
ar

an
te

e

Scale

Formal Verification:
Prove mathematically
that a program is correct

RV: Check that program
executions are correct

Testing: Check if subset of program
inputs gives correct output

51

Can we make RV scale like testing and have guarantees of verification?

Some steps that can get us closer…

• Obtain better properties to monitor
• 85% false alarm rate is a very hard sell!

• Reduce the developer overhead of inspecting violations
• Hint: We already tried Machine Learning (ICST’20)

• Scale RV to (ultra-)large software ecosystems
• Most important software are being developed in monorepositories

• Improve the coverage of the tests (wrt to the properties)
• Otherwise, we cannot have high guarantees

52

53

Summary

