CS 5154
Integrating Runtime Verification
with Software Testing
Spring 2021

Owolabi Legunsen

Software has become
more critical to most
aspects of our daily lives

The risk posed by software failure has also grown

€he New Hork Times GOOGLE SELF-DRIVING CAR CAUSED FREEWAY Hard Questions
Airline Blames Bad Software CRASH AFTER ENGINEER MODIFIED ITS .
SOFTWARE Raised When A

BY JASON MURDOCK ON 10/17/18 AT 11:34 AM

in San Francisco Crash

Software 'Glitch'
Takes Down An

Airliner

Nest thermostat bug leaves users cold
Teteetony epores B|B|
Report: Software failure caused $1.7 trillion in financial f O v
losses in 2017 (< TechRepublc.

Software testing company Tricentis found that retail and consumer technology
were the areas most affected, while software failures in public service and
healthcare were down from the previous year.

By Scott Matteson W | January 26, 2018, 7:54 AM PST

Continuous Integration (Cl): rapid test/release cycles

Builds per day:
 Facebook: 60K*

Version Control
Google: 17K
HERE: 100K

gi e Fetch Changes Cl
g Microsoft: 30K
Server

© pass/Falil * Single open-source
projects: up to 80
0 w Releases per day
 Etsy: 50
e Release/Deploy .

* Android only; Facebook: https://bit.ly/2CAPvVN9 ; Google: https://bit.ly/2SYY4rR ;
HERE: https://oreil.ly/2TOEyeK ; Microsoft: https://bit.ly/2HgjUpw ; Etsy: https://bit.ly/21iSOJP ;

Changes

£
e
S
1

Developers

Several important problems exist in these cycles

P1: Passing tests miss bugs

S1: Find more bugs from tests
that developers already have

P3. Testing can be very slow

S3: Find bugs faster
by speeding up testing

hF

y —1 A . . . ~ A~

P2. Failed tests, no buggy changes

S2: Find bugs more reliably by
detecting such failures

)(

P4. How to test in new domains?

S4: Find bugs in emerging
application domains

HERE: https://orell.ly/210EyeK ; IMIicrosoft: https://bit.ly/2HgIUpw ; Etsy: https://bit.ly/2050JP ;

The problem that we’ll talk about today

| Problem: Passing tests miss bugs

Our Solution: Use Runtime Verification to find more bugs from

tests that developers already have

D V | r * Android only; Facebook: https://bit.ly/2CAPvVN9 ; Google: https://bit.ly/2SYY4rR ;
eve Ope S HERE: https://oreil.ly/2TOEyeK ; Microsoft: https://bit.ly/2HgjUpw ; Etsy: https://bit.ly/21iSOJP ;

In this lecture

* Integrating a lightweight formal method called
runtime verification with everyday software testing

 Benefits (find more bugs earlier)
 Challenges (high overheads)

* Progress on resolving some of the challenges

Introduction to Runtime Verification (RV)

* RV dynamically checks program executions against formal properties,
whose violations can help find bugs

* a.k.a. runtime monitoring, runtime checking, monitoring-oriented
programming, typestate checking, etc.

* RV has been around for decades, now has its own conference

Rul

Jéva—MAC L0 A

* Many RV tools: Aema J’ aV aM OP
JPAX ST A
P?LT%)LP QL(JasS

8
Hawk 144

Correctness Guarantee

>

One reason why RV is appealing

Formal Verification:

Prove mathematically

that a program is correct ®
RV: Check that program
executions are correct

Testing: Check if subset of program
inputs gives correct output

—
Scale

Can RV help bring some of the mathematical rigor of
formal verification to everyday software development?

No study of RV during testing of real-world software

Version Control

e Release/Deploy All prior RV techniques
targeted post-release runs

Developers

No previous RV technigues for evolving systems

Version Control

Developers

JavaMOP: a representative RV tool

Violations

Properties

JavaMOP

Code + Tests

Example property: Collection SynchronizedCollection (CSC)

C @& https://docs.oracle.com/javase/7/docs/api/java/util/Collections.html#synchronizedCollection(java.util. Collection)

synchronizedCollection

public static <T> Collection<T> synchronizedCollection(Collection<T> c)

It is imperative that the user manually synchronize on the returned collection when iterating over it:

Collection ¢ = Collections.synchronizedCollection(myCollection);

synchronized (c) {
Iterator i = c.iterator(); // Must be in the synchronized block
while (i.hasNext())
foo(i.next());

i
Failure to follow this advice may result in non-deterministic behavior. 13

CSC property in JavaMOP

Parameters

A
| |
1. Collections_SynchronizedCollection (Collection c, Iterator i) {
2. Collectionc;
~ 3. creation event sync after() returning (Collection c):
4. call (Collections.synchronizedList(Collection)) ...
5. event syncMk after (Collection c) returning (Iterator i):
6. call (Collection+.iterator()) && target (c) && condition (Thread.holdsLock(c)) {}
7. event asyncMk after (Collection c) returning (lterator i):
8. call (Collection+.iterator() && target(c) && condition (IThread.holdsLock(c)) {}
9. event access before (lterator i):
_10. call (Iterator.*(..)) && target (i) && condition (!Thread.holdsLock(this.c)) {}
«<—11. ere:(syncasyncMk) | (sync syncMk access)
formula overthe events 15 Gmatch { RVMLogging.out.println (Level.CRITICAL, DEFAULT MSG); ... }

13.}
Handler: action taken

after specification is
violated

Events: related method
calls or field accesses

Specification: logical

14

Other example properties

Property Name Nature of bug found

StringTokenizer HasMoreElements Crash: don’t fetch elements
from an empty collection

ByteArrayOutputStream_FlushBeforeRetrieve Correctness: don’t read streams
with incomplete data

InetSocketAddress Port Performance: don’t use too
many ephemeral ports

TestNG example: from RV of test executions to bugs

{

CSC was violated on... SuiteHTMLReporter.java:66... a

Manual inspection:
multiple threads can
access “im”

synchronized collection was accessed in thread—unsafe manner

SuiteHTMLReporter

L | & JavaMOP
65: im = Collections.synchconi ist(...);

66: for (lInvokedMethod iim . {..}

O TestOnClassListener |
16

How JavaMOP works

CSC
Properties

Monitors

] Instrumented)
Instrumentation Execution
Code + Tests

Events

Collections.synchronizedList()
Collection+.iterator()

7

Example: finding bugs from RV of test executions

CSC (Collection c, Iterator i) {
Collection c;

creation event sync after() returning (Collection c):

event asyncMk after (Collection c) returning (lterator i):

1
2
3
4, call (Collections.synchronizedList(Collection)) | | ... {this.c=c; }
5
6

call (Collection+.iterator() && target(c) && !Thread.holdsLock(c) {}

11. ere:(syncasyncMKk) |

12. @match { RVMLogging.out.printin (Level.CRITICAL, _ DEFAULT_MSG); ... }}

Spec Violations

manner

CSC was violated on... (SuiteHTMLReporter.java:65)...
synchronized collection accessed in thread-unsafe

A

65. im = Collections.synchronizedList(...);
66. for (IiInvokedMethod iim :im) { ... }

o

im = Collections.synchronizedList(...);
CSCMonitor monitor = new
CSCMonitor();
monitor.syncEvent(im);

Iterator i = im.iterator();
monitor.asyncMkEvent(im, i);

while (i.hasNext()) {

lInvokedMethod iim = i.next(); ... }

Execution

Monitors

asyncMk(im),

sync(im),

How is RV different from testing?

Automatically
generated to check
the properties

Specified independent of code+tests
Specified in mathematical logic

Monitors
Properties
Instrumented

. Execution
Instrumentation Code + Tests

Code
+

Tests

19

Contribution: large-scale study of RV during testing

We conducted our study to answer the following questions:
* How many additional bugs does RV help find during testing?
* How high is RV overhead during testing?

* How often do property violations not indicate true bugs?

Properties used in our study

* Formal specifications of correct standard Java library APl usage

* Manually written!! or automatically mined 2! by other researchers

* 161 manually written properties from 4 packages: java.lang, java.io,
java.util, and java.net

* JavaMOP supports different formalism: LTL, CFG, FSM, ERE, SRS, etc.

[1] Q. Luo, Y. Zhang, C. Lee, D. Jin, P. O. Meredith, T. F. Serbanuta, and G. Rosu. RV-Monitor: Efficient parametric runtime verification with simultaneous
properties. RV 2014
[2] M. Pradel, C. Jaspan, J. Aldrich, and T. R. Gross. Statically checking APl protocol conformance with mined multi-object specifications. ICSE 2012

Overview of our study
218 projects, 20K+ tests 199

Code + Tests JavaMOP
~GitHub

WV ELDE]

1379

Inspection

CEY Submit Pull Requests

22

Some of the projects where we found bugs

Joda Time Comf]f\)/?ofth]m . Allaclle f
> | "““Camel

commons
lang .

TestN

Summary of study results

 How many additional bugs does RV help find during testing?
v/ Total bugs found so far: 198
v So far: 95 bugs reported, 74 accepted, 3 rejected

* How high is RV overhead during testing?

X Up to 40x
* e.g., Imin to 40min, 30mins to 10hours

* How often do property violations not indicate true bugs?

X 86% of ~1.4K violations were not bugs

Why are some violations (not) bugs?

Pull Request

65: im = Collections.synchronizedList(...);

65: im = Collections.synchronizedList(...); s | 66: + synchronized (im) {
66: for (linvokedMethod iim :im) { ... } 67: for (llnvokedMethod iim :im) { ... }

68: +}

(1 TestNG accepted our pull requests for 13 CSC violations
S
—

XStream developers rejected our pull request for similar CSC bug
« “..there’s no need to synchronize it... as explicitly stated ...,
XStream is not thread-safe ... this is documented ...”

Properties do not capture enough program context!!!

25
[1] S. Thummalapenta and T. Xie. Alattin: Mining Alternative Patterns for Detecting Neglected Conditions. ASE 2009

Logistics

* Homework 4 is released
* Work in your project group
* Due 5/10/2021

* Project Sprint 2 will be released soon

* Focus: using testing JavaMOP and/or Randoop
* Due 5/14/2021 (last day of classes)

Reflecting on the study results

* RV overhead is still high despite decades of tremendous research progress
* Overhead in machine time (up to 40x)
* Overhead in developer time to inspect violations (1200 hours / 1379 violations)
* Yet, RV helped find many bugs from existing tests

* Do we need faster RV algorithms and better properties? Yes!

* But what if we also consider how developers are likely to use RV?

RV during Continuous Integration (Cl)?

* Observation: All prior
RV techniques are
evolution-unaware
(Base R

Version Control

e Fetch Changes
Cl
Server

9 Pass/Fail

e Base RV would re-
incur entire overhead

0 if re-run after each
code change
6 Release/Deploy .

D V | r * Android only; Facebook: https://bit.ly/2CAPvVN9 ; Google: https://bit.ly/2SYY4rR ;
eve Ope S HERE: https://oreil.ly/2TOEyeK ; Microsoft: https://bit.ly/2HgjUpw ; Etsy: https://bit.ly/21iSOJP ;

Changes

£
e
S
1

New ldea: Focus RV on code changes?

Version Control Code Changes are
gi e ch Changes typically very small
relative to entire
. ©) Pass/Fail Se”’er code base

£
=
S
L 0. 97% of classes

% O release/Denloy . changed on average

in our experlments
Developers 29

Changes

Contribution: Evolution-aware Runtime Verification

* Goal: leverage software evolution to scale RV better during testing

* Intended benefits:
1. Reduce accumulated runtime overhead of RV across multiple program versions
2. Show developers only new violations after code changes

* Complementary to techniques that improve RV on single program versions
* Faster RV algorithms for single program versions
* Running tests in parallel
* Improve properties to have fewer false alarms

We proposed three evolution-aware RV techniques

1. Regression Property Selection (RPS)
* Re-monitors only properties that can be violated in parts of code affected by changes

Version Control

2. Violation Message Suppression (VMS) v Clﬁ = ggi

* Shows only new violations after code changes |

it

Comm
Changes

N
&
or\?ar,‘:\
o Cl Server
N

3. Regression Property Prioritization (RPP)
* Splits RV into two phases: DeyEi e

« critical phase: check properties more likely to find bugs on developer’s critical path
* background phase: monitor other properties outside developer’s critical path

The three techniques can be used together

31

Violation Message

Evolution-aware RV in JavaMOP Suppression (VMS)

Regression Property Selection (RPS)

Violations

Monitors

Properties
‘ Instrumentation Instrumented Execution
Y Code + Tests

(@
”I/.CQ/,)

Regression Property Prioritization (RPP) 3

Evolution-aware RV — Result Overview
—> Y DIv 5x

* RPS and RPP significantly reduced accumulated runtime overhead of Base RV
* Average: from 9.4x to 1.8x
 Maximum: from 40.5x)to 4.2x

 VMS showed 540x fewer violations than Base RV

* RPS did not miss any new violation after code changes

Base RV during software evolution

* Base RV re-monitors all properties after every code change
* No knowledge of dependencies in the code, or between code and properties

" “ Properties

Code -

Old Version: monitor CSC, P1, P2

New Version: re-monitor CSC, P1, P2

000

D
E
Tests |

Regression Property Selection (RPS) Overview

Old version of Code+Tests
\ . Subset of all
New version of Code+Tests —> : :
available properties
All available properties g

A

Selected subset of properties are those that may generate new violations

35

Regression Property Selection (RPS) —step 1

Re-monitors only properties that can be violated in parts of code affected by changes

A=1B
B} Step 1a: Build Class Dependency Graph
“ O (CDG) for new version

: Step 1b: Map classes to properties for
© which the classes may generate events

Inheritance or Use enerate events for

Regression Property Selection (RPS) — step 2

Re-monitors only properties that can be violated in parts of code affected by changes

A=1B
1B} : Step 2: Compute affected classes

Affected classes: those that generate events that

© can lead to new violations after code changes
Inheritance or Use May Generate events for

© Class X is affected if

1. X changed or is newly added
2. X transitively depends on a changed class, or

3. Class Y that satisfies (1) or (2) can transitively
pass data to X

Regression Property Selection (RPS) —steps 3 & 4

Re-monitors only properties that can be violated in parts of code affected by changes

A ={B}

Step 3: Select affected properties — those for
@ which affected classes may generate events

\ / © Step 4: Re-monitor affected properties: {CSC, P1}

* P2 is NOT re-monitored in the new version
» Affected classes cannot generate P2 events
* Saves time to monitor P2; does not show old P2 violations

Inheritance or Use May Generate events for

Total RPS time must be less than Base RV time

_ Step 1a: Build Class Dependency Graph (CDG) for new version
Step 1b: Map classes to properties for which they may generate events

Analysis
Step 2: Compute affected classes

| Step 3: Select affected properties

Re-monitoring 1 step 4: Re-monitor only affected properties

Base RV (Re-monitor all properties)

Static and Fast

Time Savings

Analysis Re-monitoring

4.3% of RPS time

Total Time for RPS 20

RPS Safety and Precision - Definitions

e Evolution-aware RV is safe if it finds all new violations that base RV finds

* Evolution-aware RV is precise if it finds only new violations that base RV finds

* RPS discussed so far is safe but not precise
» Safe modulo CDG completeness, test-order dependencies, dynamic language features

40

Results of Safe RPS — ps,

Avg. JavaMOP Overhead (,,0p/t1ests)

o0
1

(o]
1

=
1

(RN
1

(]
s
L

e 20 versions each of 10 GitHub projects
* Average project size: 50 KLOC
* Average test running time without RV: 51 seconds

B Safe RPS

Bl Base RV

Il Base RV

Bl Safe RPS

o W = o
-] o (]
1 L L 1

Avg. Number of Violations
=

—_—
—
1

How can we improve these results?

P51

41

RPS variants that use fewer affected classes

Goal: Reduce RV overhead by varying “what” set of affected classes is used
to select properties

A ={B}

What classes are used to select | ps; | ps, | PS;
properties?

Changed classes (i.e., A)

Dependents of A

.

000

Dependees of A

SISTNS
LN
LI BN N

Dependees of A’s Dependents

Inheritance or Use May Generate events for

Using fewer affected classes can be (un)safe, e.g., ps,

class B {
- public static boolean b = false;
+ public static boolean b = true;

A = {B})

? | CSC i
class D {
class C{ o
= / O void getF() { static void foo(boolean b) {

lj

. — if(bY{//Plevents}
i Q 1 D-too(BD) else{// No P1 events}

ps, can be safe if C does not pass data to D

Inheritance or Use May Generate events for

RPS variants that instrument fewer classes

Goal: Reduce RV overhead by varying “where” selected properties are

instrumented

A ={B}

L

Inheritance or Use

000

May Generate events for

Where selected properties are | ps; | psy | ps; |ps;
instrumented (i € {1,2,3})

affected(A) v v | vV
affected(A)® v | x| v | %
third-party libraries vV | vV | % x

* have fewer violations
e ¥36% of RV overhead
» excluding them can be safe

RPS Variants — Expected Efficiency/Safety Tradeoff

“more efficient than” “less safe tha
i s
P s y o

g & 085S o
PEE P PSy
ps§t —
ps)
159
sl B PSS 4
P: 2 S 22 PS5
pss’ B
J o
£ —1 e .
)8 2%y f — o k
P33 T J PSs P33
5 .

.
s g
@ PS3

2 Strong RPS variants are safe under certain assumptions: ps; and psy

10 Weak RPS variants are unsafe; they trade safety for efficiency

45

RPS Results — average runtime overhead

@)
1

(@)
1

b
1

Avg. JavaMOP Overhead (%,0p/t1ests)

0 = ; P L ; ” ; —
BL psi1 PS] psa pss pSs BL! ps{ psg psﬁf psé PSS psgf psgf
|)\)
| |
Base RV RPS Variants

46

RPS Results — no. of violations reported

Excluding third-party libraries does not miss many violations on average

54

Avg. Number of Violations

. { ‘C /] ; N
psh psi o ps$t ps3 psh

BL BL' ps| Ps2

ps1

I

Base RV RPS Variants

47

RPS Results — precision and safety

* VMS is precise — it shows only new violations
* RPSis not precise — it shows two orders of magnitude more violations than VMS

* We manually confirmed whether all RPS variants find all violations from VMS

 Surprisingly, all weak RPS variants were safe in our experiments

Why weak RPS variants were safe in our experiments
* 75% of event traces observed by monitors involved only one class

* 32 of 33 new violations were due to changes whose effects are in ps,
 Additional scenarios captured by ps, and ps, did not lead to new violations
* We may have missed old violations when not tracking ps, or ps, scenarios

* 87% of old violations missed by excluding third-party libraries did not involve
any event from the code

Regression Property Prioritization (RPP)

Vi Critical V2 V3
phase

properties

Background
phase

Combining RPS+RPP reduced RV overhead to 1.8x (from 9.4x)

50

Correctness Guarantee

>

Where do we (want to) go from here?

oy
-

Formal Verification: N Ioe
Prove mathematically e
that a program is correct @
RV: Check that program
executions are correct

Testing: Check if subset of program
inputs gives correct output

—
Scale

Can we make RV scale like testing and have guarantees of verification?

51

Some steps that can get us closer...

e Obtain better properties to monitor
* 85% false alarm rate is a very hard sell!

* Reduce the developer overhead of inspecting violations
* Hint: We already tried Machine Learning (ICST’20)

 Scale RV to (ultra-)large software ecosystems
* Most important software are being developed in monorepositories

* Improve the coverage of the tests (wrt to the properties)
* Otherwise, we cannot have high guarantees

Summary

Overview of our study
218 projects, 20K+ tests 199

Code + Tests JavaMOP
? GitHub

Manual
Inspection

Ll Submit Pull Requests

1379

RPS Variants — Expected Efficiency/Safety Tradeoff

“more efficient than” “less safe than"”
L _psy, ps§

st = } " s o . _ /
st s
B = . PRz

Psy _bsh psh pss
psg i psst {
_.Pss . Psy

Pes L Pss psg _ s
Py st

2 Strong RPS variants are safe under certain assumptions: ps; and ps{

10 Weak RPS variants are unsafe; they trade safety for efficiency

RPS Results — average runtime overhead

Thtests

n/

Avg. JavaMOP Owerhead (¢,

o

.

BL psi PS5 ps2 pss pss BL' ps, psy ps psh PSS

| [

| T
Base RV RPS Variants

Where do we (want to) go from here?

° Y)
Formal Verification: e log
Prove mathematically ,-.’_
that a program is correct @ -
RV: Check that program
executions are correct

Correctness Guarantee

@
Testing: Check if subset of program
inputs gives correct output

Scale .

Can we make RV scale like testing and have guarantees of verification?

53

