
CS 5154

Criteria-Based Test Design

Owolabi Legunsen

The following are modified versions of the publicly-available slides for Chapters 2
and 5 in the Ammann and Offutt Book, “Introduction to Software Testing”

(http://www.cs.gmu.edu/~offutt/softwaretest)

In Today’s Class (Hopefully…)
� Introduction to Model-Driven Test Design

� Hands-on Demo (if we have time)

– The Maven Build System

– Measuring Coverage

Introduction to Software Testing, Edition 2 (Ch 5) © Ammann & Offutt 2

Introduction to Software Testing, Edition 2 (Ch 5) © Ammann & Offutt 3

Changing Notions of Testing

� Old view: focus on testing at each software development
phase as being very different from other phases

– Unit, module, integration, system, …

� This class: think in terms of structures and criteria

– input space, graphs, logical expressions, syntax

� Test design is largely the same at each phase

– Creating the model is different

– Choosing values and automating the tests is different

Model-Driven Test Design

Introduction to Software Testing, Edition 2 (Ch 2) © Ammann & Offutt 4

software
artifact

model /
structure

test
requirements

refined
requirements /

test specs

input
values

test
cases

test
scripts

test
results

pass /
fail

IMPLEMENTATION
ABSTRACTION
LEVEL

DESIGN
ABSTRACTION
LEVEL

test
requirements

Model-Driven Test Design – Steps

Introduction to Software Testing, Edition 2 (Ch 2) © Ammann & Offutt 5

software
artifact

model /
structure

test
requirements

refined
requirements /

test specs

input
values

test
cases

test
scripts

test
results

pass /
fail

IMPLEMENTATION
ABSTRACTION
LEVEL

DESIGN
ABSTRACTION
LEVEL

analysis

criterion refine

generate

prefix
postfix

expected

automateexecuteevaluate

test
requirements

domain
analysis

Model-Driven Test Design–Activities

Introduction to Software Testing, Edition 2 (Ch 2) © Ammann & Offutt 6

software
artifact

model /
structure

test
requirements

refined
requirements /

test specs

input
values

test
cases

test
scripts

test
results

pass /
fail

IMPLEMENTATION
ABSTRACTION
LEVEL

DESIGN
ABSTRACTION
LEVEL

Test Design

Test
Execution

Test
Evaluation

Raising our abstraction level makes
test design MUCH easier

Criteria-Based Test Design

Introduction to Software Testing, Edition 2 (Ch 2) © Ammann & Offutt 7

software
artifact

model /
structure

test
requirements

refined
requirements /

test specs

input
values

test
cases

test
scripts

test
results

pass /
fail

IMPLEMENTATION
ABSTRACTION
LEVEL

DESIGN
ABSTRACTION
LEVEL

Criteria give us
test requirements

Introduction to Software Testing, Edition 2 (Ch 5) © Ammann & Offutt 8

Test design concepts

� Test Requirements : A specific element of a software
artifact that a test case must satisfy or cover

� Coverage Criterion : A rule or collection of rules that
impose test requirements on a test set

A tester’s job is simple : Define a model of the software,
then find ways to cover it

But, many coverage criteria exist
All Combinations Coverage

Each choice Coverage

Pair-Wise Coverage

T-Wise Coverage

Base Choice Coverage

Multiple Base Choice Coverage

Node Coverage

Edge Coverage

Edge-pair Coverage

Prime Path Coverage

Simple Round Trip Coverage

Complete Round Trip Coverage

Complete Path Coverage

Specified Path Coverage

All-Defs Coverage

All-Uses Coverage
9

All-du-Paths Coverage

Predicate Coverage

Combinatorial Coverage

General Active Clause Coverage

Correlated Active Clause Coverage

Restricted Active Clause Coverage

General Inactive Clause Coverage

Restricted Inactive Clause Coverage

Implicant Coverage

Terminal Symbol Coverage

Production Coverage

Mutation Coverage

Mutation Operator Coverage

Mutation Production Coverage

Strong Mutation Coverage

Weak Mutation Coverage M
ul

ti
p
le

 U
n
iq

u
e

T
ru

e
P
o
in

ts
 C

o
ve

ra
ge

C
o
rr

es
p
o
n
d
in

g
U

ni
q
u
e

T
ru

e
P
o
in

ts
 a

nd
 N

ea
r

Fa
ls

e
P
o
in

t
P
ai

r
C

o
ve

ra
ge

M
ul

ti
p
le

 N
ea

r
Fa

ls
e

P
o
in

t
C

o
ve

ra
ge

Organized approach to criteria

10

� Researchers defined many more criteria

� Some criteria in the literature are redundant with respect
to one another

� The view in this book (and in this course): all criteria are
defined on just four types of structures

– Input Domain

– Graph Representations of Software

– Logic expressions in Software

– Syntax

How to obtain these structures?
� The structures can be extracted from lots of artifacts

– Graphs can be extracted from UML use cases, finite state
machines, source code, …

– Logical expressions can be extracted from decisions in program
source, guards on transitions, conditionals in use cases, …

� MDTD ≠ “model-based testing,” (MBT) which derives tests
from formal models of the system under test

– MBT models usually describe part of the behavior

– The source code is explicitly not considered a model in MBT

Introduction to Software Testing, Edition 2 (Ch 5) © Ammann & Offutt 11

Criteria Based on Structures

Introduction to Software Testing, Edition 2 (Ch 5) © Ammann & Offutt 12

Structures : Four ways to model software

1. Input Domain
Characterization
(sets)

A: {0, 1, >1}

B: {600, 700, 800}

C: {cs, ece, is, sds}

2. Graphs

3. Logical Expressions (not X or not Y) and A and B

4. Syntactic Structures
(grammars)

if (x > y)

z = x - y;

else

z = 2 * x;

Example : Jellybean Coverage
Flavors :

1. Lemon

2. Pistachio

3. Cantaloupe

4. Pear

5. Tangerine

6. Apricot

Introduction to Software Testing, Edition 2 (Ch 5) © Ammann & Offutt 13

Colors :

1. Yellow (Lemon, Apricot)

2. Green (Pistachio)

3. Orange (Cantaloupe,
Tangerine)

4. White (Pear)

� Quiz: What coverage criteria would be appropriate?

Example : Jellybean Coverage
Flavors :

1. Lemon

2. Pistachio

3. Cantaloupe

4. Pear

5. Tangerine

6. Apricot

Introduction to Software Testing, Edition 2 (Ch 5) © Ammann & Offutt 14

Colors :

1. Yellow (Lemon, Apricot)

2. Green (Pistachio)

3. Orange (Cantaloupe,
Tangerine)

4. White (Pear)

� Possible coverage criteria :

1. Taste one jellybean of each flavor
• Deciding if yellow is Lemon or Apricot is a controllability problem

2. Taste one jellybean of each color

Introduction to Software Testing, Edition 2 (Ch 5) © Ammann & Offutt 15

Coverage

� Infeasible test requirements : test requirements that
cannot be satisfied

– No test case values exist that meet the test requirements

– Example: Dead code

– Detecting infeasible test requirements is undecidable for most test criteria

� Thus, 100% coverage is impossible in practice

Given a set of test requirements TR for
coverage criterion C, a test set T satisfies C
coverage if and only if for every test
requirement tr in TR, there is at least one test
t in T such that t satisfies tr

More Jellybeans

� Does test set T1 satisfy the flavor criterion ?

Introduction to Software Testing, Edition 2 (Ch 5) © Ammann & Offutt 16

T1 = { three Lemons, one Pistachio, two Cantaloupes,
one Pear, one Tangerine, four Apricots }

� Does test set T2 satisfy the flavor criterion ?

T2 = { One Lemon, two Pistachios, one Pear, three
Tangerines }

� Does test set T2 satisfy the color criterion ?

Introduction to Software Testing, Edition 2 (Ch 5) © Ammann & Offutt 17

Coverage Level

� T2 on the previous slide satisfies 4 of 6 test requirements

The ratio of the number of test requirements
satisfied by T to the size of TR

Introduction to Software Testing, Edition 2 (Ch 5) © Ammann & Offutt 18

Two Ways to Use Test Criteria
1. Directly generate test values to satisfy the criterion

– Often assumed by the research community

– Most obvious way to use criteria

– Very hard without automated tools

2. Generate test values and measure against the criterion

– Usually favored by industry

– Sometimes misleading

– If tests have <100% coverage, what does that mean?

Test criteria are sometimes called metrics

Introduction to Software Testing, Edition 2 (Ch 5) © Ammann & Offutt 19

Generators and Recognizers
� Generator : A procedure that automatically generates

values to satisfy a criterion

� Recognizer : A procedure that decides whether a given
set of test values satisfies a criterion

� Both problems are undecidable for most criteria

� It is possible to recognize whether test cases satisfy a
criterion far more often than it is possible to generate
tests that satisfy the criterion

� Coverage analysis tools are quite plentiful

All criteria are NOT born equal
� Quiz: What is the smallest code and its test values that

you can come up with such that the test values satisfy
100% statement coverage but miss a bug in the code?

Introduction to Software Testing, Edition 2 (Ch 5) © Ammann & Offutt 20

All criteria are NOT born equal
� Code and test values that satisfy 100% statement coverage

but miss a bug in the code?

int stringFactor(String i, int n) {

if (i != null || n !=0)

return i.length()/n;

else

return -1; }

� Test values: [“happy”, 2], [null, 0]

� “stronger” criteria that can reveal this bug

Introduction to Software Testing, Edition 2 (Ch 5) © Ammann & Offutt 21

Introduction to Software Testing, Edition 2 (Ch 5) © Ammann & Offutt 22

Comparing criteria: subsumption

� Criteria Subsumption : Test criterion C1 subsumes C2 iff
every set of test cases that satisfies C1 also satisfies C2

� Must be true for every set of test cases

� Examples :

– The flavor criterion on jellybeans subsumes the color criterion
… if we taste every flavor, we taste one of every color

– If a test set has covered every branch in a program (satisfied the
branch criterion), then the test set is guaranteed to also have
covered every statement

We’ve seen subsumption before

Introduction to Software Testing, Edition 2 (Ch 2) © Ammann & Offutt 23

45

3

2

1

Graph
Abstract version

Edges
1 2
2 3
3 2
3 4
2 5
Initial Node: 1
Final Nodes: 4, 5

6 requirements for
Edge-Pair Coverage
1. [1, 2, 3]
2. [1, 2, 5]
3. [2, 3, 4]
4. [2, 3, 2]
5. [3, 2, 3]
6. [3, 2, 5]

Test Paths
[1, 2, 5]
[1, 2, 3, 2, 5]
[1, 2, 3, 2, 3, 4]

Criteria-Based Test Design: Pros

� Criteria maximize the “bang for the buck”

– Fewer tests that are more effective at finding faults

– Comprehensive test set with minimal overlap

� Traceability from software artifacts to tests

– The “why” for each test is answered

– Built-in support for regression testing

� A “stopping rule” for testing—advance knowledge of how
many tests are needed

� Natural to automate
Introduction to Software Testing, Edition 2 (Ch 5) © Ammann & Offutt 24

Criteria-Based Test Design: Cons

� Blindly aiming to satisfy coverage criteria can make it easy
to ignore domain knowledge

– Domain knowledge: very useful for deriving tests that find bugs

– Criteria-Based Test Design should be complemented with
human-based test design

Introduction to Software Testing, Edition 2 (Ch 5) © Ammann & Offutt 25

Characteristics of a Good
Coverage Criterion

1. It should be fairly easy to compute test requirements
automatically

2. It should be efficient to generate test values

3. The resulting tests should reveal as many faults as
possible

Introduction to Software Testing, Edition 2 (Ch 5) © Ammann & Offutt 26

� Subsumption is only a rough approximation of fault
revealing capability

� Researchers still need to gives us more data on how to
compare coverage criteria

Introduction to Software Testing, Edition 2 (Ch 5) © Ammann & Offutt 27

Test Coverage Criteria

� Software testing is expensive and labor-intensive

� Coverage criteria help choose which test inputs to use

� More likely that the tester will find problems

� More assurance that software has high quality & reliability

� A goal or stopping rule for testing

� Criteria makes testing more efficient and effective

How do we start applying these ideas in practice?

Steps to improving adoption?

� Testers need more and better software tools

� Testers need to adopt practices and techniques that lead
to more efficient and effective testing

– More education

� Testing & QA teams need more technical expertise

– Developer expertise has been increasing dramatically

� CS5154 will help you to start taking these steps

Introduction to Software Testing, Edition 2 (Ch 5) © Ammann & Offutt 28

Four Roadblocks to Adoption

Introduction to Software Testing, Edition 2 (Ch 5) © Ammann & Offutt 29

1. Lack of test education

2. Necessity to change process

3. Usability of tools

4. Need for better tools

Number of UG CS programs in US that require testing ? 0
Number of MS CS programs in US that require testing ?

Number of UG testing classes in the US ?
0

~50

Most test tools don’t do much – but most users do not realize they could be better

Adoption of many test techniques and tools require changes in development process

Many testing tools require the user to know the underlying theory to use them

This is expensive for most software companies

Do we need to know how an internal combustion engine works to drive ?

Do we need to understand parsing and code generation to use a compiler ?

Few tools solve the key technical problem – generating test values automatically

Microsoft and Google say half their engineers are testers, programmers test half the time

Summary: criteria-based design

Introduction to Software Testing, Edition 2 (Ch 5) © Ammann & Offutt 30

• Many companies still use “monkey testing”

• A human sits at the keyboard, wiggles the mouse
and bangs the keyboard

• No automation

• Minimal training required

• Some companies automate human-designed tests

• But companies that use both automation and criteria-
based testing

Save money

Find more faults

Build better software

Structures for Criteria-Based Testing

Introduction to Software Testing, Edition 2 (Ch 5) © Ammann & Offutt 31

Four Structures for
Modeling Software

Graphs LogicInput Space Syntax

Input

Models

Integ

Source

Applied
to

DNFSpecs

FSMsSource

Applied to

Use cases

Specs

Design

Source

Applied
to

Ideas that we learned so far…
1. Why do we test – to reduce the risk of using software

– Faults, failures, the RIPR model

– Test process maturity levels – level 4 is a mental discipline that
improves the quality of the software

2. Model-Driven Test Design
– Four types of test activities – test design, automation, execution

and evaluation

3. Test Automation
– Testability, observability and controllability, test automation

frameworks

4. Criteria-based test design
– Four structures – test requirements and criteria

Introduction to Software Testing, Edition 2 (Ch 5) © Ammann & Offutt 32

Earlier and better testing empowers test managers

Next Class
� Get started on Input Space Partitioning

� (Maybe) Hands-on demo on measuring coverage

– command line

– Maven

Introduction to Software Testing, Edition 2 (Ch 5) © Ammann & Offutt 34

