
CS 5154

Input Space Partitioning

Owolabi Legunsen

The following are modified versions of the publicly-available slides for Chapter 6
in the Ammann and Offutt Book, “Introduction to Software Testing”

(http://www.cs.gmu.edu/~offutt/softwaretest)

1st of four structures we’ll cover

Introduction to Software Testing, Edition 2 (Ch 6) © Ammann & Offutt 2

Four Structures for
Modeling Software

Graphs LogicInput Space Syntax

Input

Models

Integ

Source

Applied
to

DNFSpecs

FSMsSource

Applied to

Use cases

Specs

Design

Source

Applied
to

© Ammann & Offutt 3

Why Input Space Partitioning?
• No implementation knowledge is needed

– Just the input space

• Easy to apply without automation

• Can adjust the procedure to get more or fewer tests

• Equally applicable at several levels of testing

– Unit, Integration, System, etc.

Introduction to Software Testing, Edition 2 (Ch 6)

Recommended Reading

4

Input Domains and ISP
• Input domain: all possible inputs to a program

– Most input domains are so large that they are effectively infinite

• Input parameters define the scope of the input domain
– Parameter values to a method, data from a file, global variables,

user inputs

• ISP: First partition input domain into regions (called blocks)

– values in each block are assumed equally useful for testing

• ISP: Then choose at least one value from each block

Introduction to Software Testing, Edition 2 (Ch 6) © Ammann & Offutt 5

Input domain: Alphabetic letters

Partitioning characteristic: Case of letter

• Block 1: upper case

• Block 2: lower case

© Ammann & Offutt 6

Partitioning Domains
• Let the input domain be D

• Partition scheme q of D defines set of blocks, Bq=b1,b2,…,bQ

• The partition must satisfy two properties :

1. Blocks must be pairwise disjoint (no overlap)

2. Together the blocks must cover the domain D (complete)

bi ∩ bj = ∅, i j, bi, bj Bq

b1 b2

b3

Introduction to Software Testing, Edition 2 (Ch 6)

⋃ b = D
b Bq

In-Class Exercise

Introduction to Software Testing, Edition 2 (Ch 6) © Ammann & Offutt 7

Design a partitioning
for all integers

That is, partition integers into blocks
such that each block seems to be

equivalent in terms of testing

Make sure your partition is valid:
1) Pairwise disjoint

2) Complete

Example partition of all integers

Introduction to Software Testing, Edition 2 (Ch 6) © Ammann & Offutt 8

© Ammann & Offutt 9

Using Partitions – Assumptions
• Choose a value from each block

– Each value is assumed to be equally useful for testing

• Forming partitions

– Find characteristics of the inputs : case of letter, relationship to 0,
parameters, semantic descriptions, …

– Partition each characteristic into blocks

– Choose tests by combining values from blocks

Introduction to Software Testing, Edition 2 (Ch 6)

© Ammann & Offutt 10

Using Partitions – Characteristics
• Example characteristics

– Whether X is null

– Order of the list F (sorted, inverse sorted, arbitrary, …)

– Min separation of two aircraft

– Input device (DVD, CD, VCR, computer, …)

– Hair color, height, major, age

Introduction to Software Testing, Edition 2 (Ch 6)

© Ammann & Offutt 11

Choosing Partitions

• Defining partitions is not hard, but is easy to get wrong

• Consider the characteristic “order of elements in list F”

b1 = sorted in ascending order

b2 = sorted in descending order

b3 = arbitrary order

but … something’s fishy …

What if the list is of length 0 or 1?

The list will be in all three blocks

That is, disjointness is not satisfied

Solution:

Two characteristics that each
address just one property

C1: List F sorted ascending
- c1.b1 = true
- c1.b2 = false

C2: List F sorted descending
- c2.b1 = true
- c2.b2 = false

Introduction to Software Testing, Edition 2 (Ch 6)

Design blocks for
that characteristic

Can you find the
problem?

Can you think of
a solution?

© Ammann & Offutt 12

Thinking about Partitions
• If the partitions are not complete or disjoint, that means

the partitions have not been considered carefully enough

• They should be reviewed carefully, like any design

• Different alternatives should be considered

• Input domain modeling happens in five steps …

– Steps 1&2: move from implementation level to abstraction level

– Steps 3&4: entirely at the abstraction level

– Step 5: move back to the implementation level
Introduction to Software Testing, Edition 2 (Ch 6)

© Ammann & Offutt 13

Input domain modelling (step 1)

• Identify testable functions

– Individual methods have one testable function

– Methods in a class often have the same characteristics

– Programs have more complicated characteristics—modeling
documents such as UML can be used to design characteristics

– Systems of integrated hardware and software components can
use devices, operating systems, hardware platforms, browsers,
etc.

Introduction to Software Testing, Edition 2 (Ch 6)

© Ammann & Offutt 14

Input domain modelling (step 2)

Introduction to Software Testing, Edition 2 (Ch 6)

• Find all the parameters

– Often straightforward, even mechanical

– Important to be complete

– Methods : Parameters and state (non-local) variables used

– Components : Parameters to methods and state variables

– System : All inputs, including files and databases

© Ammann & Offutt 15

Input domain modelling (step 3)

• Model the input domain

– The domain is scoped by the parameters

– The structure is defined in terms of characteristics

– Each characteristic is partitioned into sets of blocks

– Each block represents a set of values

– This is the most creative design step in using ISP

Introduction to Software Testing, Edition 2 (Ch 6)

© Ammann & Offutt 16

Input domain modelling steps 4&5

Introduction to Software Testing, Edition 2 (Ch 6)

• Step 4: Use a criterion to choose combinations of values

– A test input has a value for each parameter

– One block for each characteristic

– Choosing all combinations is usually infeasible

– Coverage criteria allow subsets to be chosen

• Step 5 : Refine combinations of blocks into test inputs

– Choose appropriate values from each block

© Ammann & Offutt 18

Two Approaches to Input Domain
Modeling

1. Interface-based approach

– Develops characteristics directly from individual input parameters

– Simplest application

– Can be partially automated in some situations

2. Functionality-based approach

– Develops characteristics from a behavioral view of the program

– Harder to develop—requires more design effort

– May result in better tests, or fewer tests that are as effective

Input Domain Model (IDM)

Introduction to Software Testing, Edition 2 (Ch 6)

© Ammann & Offutt 19

Interface-Based IDM

• Mechanically consider each parameter in isolation

• An easy modeling technique, relies mostly on syntax

• Some domain and semantic information won’t be used

– Could lead to an incomplete IDM

• Ignores relationships among parameters

Introduction to Software Testing, Edition 2 (Ch 6)

Interface-Based IDM Example
• Consider method triang() from class TriangleType :

– http://www.cs.gmu.edu/~offutt/softwaretest/java/Triangle.java

– http://www.cs.gmu.edu/~offutt/softwaretest/java/TriangleType.java

Introduction to Software Testing, Edition 2 (Ch 6) © Ammann & Offutt 20

public enum Triangle { Scalene, Isosceles, Equilateral, Invalid }

public static Triangle triang (int Side, int Side2, int Side3)

// Side1, Side2, and Side3 represent the lengths of the sides of a triangle

// Returns the appropriate enum value

The IDM for each parameter is identical

Characteristic : Relation of side with zero

Blocks: negative; positive; zero

© Ammann & Offutt 21

Functionality-Based IDM

• Find characteristics corresponding to intended functionality

• Requires more design effort from tester

• Can incorporate domain and semantic knowledge

• Can use relationships among parameters

• Model can be based on requirements, not implementation

• The same parameter may appear in multiple characteristics,
so it’s harder to translate values to test cases

Introduction to Software Testing, Edition 2 (Ch 6)

Functionality-Based IDM
• Again, consider method triang() from class TriangleType :

Introduction to Software Testing, Edition 2 (Ch 6) © Ammann & Offutt 22

The three parameters represent a triangle

The IDM can combine all parameters

Characteristic : Type of triangle

Blocks: Scalene; Isosceles; Equilateral; Invalid

© Ammann & Offutt 23

Steps 1&2—Identifying functionalities,
parameters, characteristics

• A creative engineering step

• More characteristics means more tests

• Interface-based : Translate parameters to characteristics

• Candidates for characteristics :
– Preconditions and postconditions (may be encoded as exceptions)

– Relationships among variables (aliasing, equality, …)

– Relationship of variables with special values (zero, null, blank, …)

Introduction to Software Testing, Edition 2 (Ch 6)

© Ammann & Offutt 24

Steps 1&2—Identifying functionalities,
parameters, characteristics (contd)

• Do not use program source—characteristics should be
based on the input domain

– Program source should be used with graph or logic criteria

• Better to have more characteristics with few blocks
– Fewer mistakes and fewer tests

• Better to have more semantic information in the IDM
– Likely to produce better tests

Introduction to Software Testing, Edition 2 (Ch 6)

In-Class Exercise

Introduction to Software Testing, Edition 2 (Ch 6) © Ammann & Offutt 25

Create two IDMs for findElement () :
1) Interface-based

2) Functionality-based

public boolean findElement (List list, Object element)
// Effects: if list or element is null throw NullPointerException
// else return true if element is in the list, false otherwise

© Ammann & Offutt 26

Steps 1 & 2—Interface & Functionality-Based

public boolean findElement (List list, Object element)
// Effects: if list or element is null throw NullPointerException
// else return true if element is in the list, false otherwise

Interface-Based Approach
Two parameters : list, element
Characteristics :

list is null (block1 = true, block2 = false)
list is empty (block1 = true, block2 = false)

Functionality-Based Approach
Two parameters : list, element
Characteristics :

number of occurrences of element in list
(0, 1, >1)

element occurs first in list
(true, false)

element occurs last in list
(true, false)

Introduction to Software Testing, Edition 2 (Ch 6)

© Ammann & Offutt 27

Step 3: Modeling the input domain

• Partitioning characteristics into blocks and values is a very
creative engineering step

• More blocks means more tests

• Partitioning often flows directly from the definition of
characteristics and both steps are done together

– Once should evaluate them separately

– Sometimes fewer characteristics can be used with more blocks
and vice versa

Introduction to Software Testing, Edition 2 (Ch 6)

© Ammann & Offutt 28

Modeling the input domain (2)

• Some strategies for identifying values :

– Include valid, invalid and special values

– Sub-partition some blocks

– Explore boundaries of domains

– Include values that represent “normal use” (happy path)

– Try to balance the number of blocks in each characteristic

– Check for completeness and disjointness

Introduction to Software Testing, Edition 2 (Ch 6)

triang(): Relation of Side with Zero
• 3 inputs, each has the same partitioning

Introduction to Software Testing, Edition 2 (Ch 6) © Ammann & Offutt 29

Characteristic b1 b2 b3

q1 = “Relation of Side 1 to 0” positive equal to 0 negative

q2 = “Relation of Side 2 to 0” positive equal to 0 negative

q3 = “Relation of Side 3 to 0” positive equal to 0 negative

• Maximum of 3*3*3 = 27 tests

• Some triangles are valid, some are invalid

• Refining the characterization can lead to more tests …

© Ammann & Offutt 30

Refining triang()’s IDM
Second Characterization of triang()’s inputs

Characteristic b1 b2 b3 b4

q1 = “Refinement of q1” greater than 1 equal to 1 equal to 0 negative

q2 = “Refinement of q2” greater than 1 equal to 1 equal to 0 negative

q3 = “Refinement of q3” greater than 1 equal to 1 equal to 0 negative

• Maximum of 4*4*4 = 64 tests

• Complete only because the inputs are integers (0 . . 1)

Values for partition q1

Characteristic b1 b2 b3 b4

Side1 5 1 0 -52 -1

Test boundary conditions
Introduction to Software Testing, Edition 2 (Ch 6)

© Ammann & Offutt 31

triang() : Type of Triangle

Geometric Characterization of triang()’s Inputs

Characteristic b1 b2 b3 b4

q1 = “Geometric Classification” scalene isosceles equilateral invalid

Characteristic b1 b2 b3 b4

q1 = “Geometric Classification” scalene
isosceles, not

equilateral
equilateral invalid

• Equilateral is also isosceles !

• We need to refine the example to make characteristics valid

Correct Geometric Characterization of triang()’s Inputs

Introduction to Software Testing, Edition 2 (Ch 6)

What’s wrong with this
partitioning?

© Ammann & Offutt 32

Functionality-Based IDM—triang()

• Values for this partitioning can be chosen as

Possible values for geometric partition q1

Characteristic b1 b2 b3 b4

Triangle (4, 5, 6) (3, 3, 4) (3, 3, 3) (3, 4, 8)

Introduction to Software Testing, Edition 2 (Ch 6)

© Ammann & Offutt 33

Functionality-Based IDM—triang()

• A different approach would be to break the geometric
characterization into four separate characteristics

Four Characteristics for triang()

Characteristic b1 b2

q1 = “Scalene” True False

q2 = “Isosceles” True False

q3 = “Equilateral” True False

q4 = “Valid” True False

• Use constraints to ensure that
– Equilateral = True implies Isosceles = True

– Valid = False implies Scalene = Isosceles = Equilateral = False

Introduction to Software Testing, Edition 2 (Ch 6)

© Ammann & Offutt 34

Using More than One IDM
• Some programs may have dozens or even hundreds of

parameters

• Create several small IDMs

– A divide-and-conquer approach

• Different parts of the software can be tested with different
amounts of rigor

– For example, some IDMs may include a lot of invalid values

• It is okay if the different IDMs overlap

– The same variable may appear in more than one IDM

Introduction to Software Testing, Edition 2 (Ch 6)

In-Class Exercise

Introduction to Software Testing, Edition 2 (Ch 6) © Ammann & Offutt 35

What two properties must be satisfied
for an input domain to be properly

partitioned?

© Ammann & Offutt 36

Step 4 – Choosing Combinations
of Values (6.2)

• Once characteristics and partitions are defined, the next
step is to choose test values

• We use criteria – to choose effective subsets

• The most obvious criterion is to choose all combinations

All Combinations (ACoC) : All combinations of blocks from
all characteristics must be used.

• Number of tests is the product of the number of blocks
in each characteristic :

Q
i=1

(Bi)

• Second characterization of triang() gives 4*4*4 = 64 tests

• Too many ?

Introduction to Software Testing, Edition 2 (Ch 6)

ISP Criteria – All Combinations

Introduction to Software Testing, Edition 2 (Ch 6) © Ammann & Offutt 37

Characteristic b1 b2 b3 b4

q1 = “Refinement of q1” greater than 1 equal to 1 equal to 0 less than 0

q2 = “Refinement of q2” greater than 1 equal to 1 equal to 0 less than 0

q3 = “Refinement of q3” greater than 1 equal to 1 equal to 0 less than 0

• Consider again “second characterization” of Triang:

Characteristic b1 b2 b3 b4

A A1 A2 A3 A4

B B1 B2 B3 B4

C C1 C2 C3 C4

• For convenience, we relabel the blocks using abstractions:

ISP Criteria – ACoC Tests

Introduction to Software Testing, Edition 2 (Ch 6) © Ammann & Offutt 38

A1 B1 C1
A1 B1 C2
A1 B1 C3
A1 B1 C4

A1 B2 C1
A1 B2 C2
A1 B2 C3
A1 B2 C4

A1 B3 C1
A1 B3 C2
A1 B3 C3
A1 B3 C4

A1 B4 C1
A1 B4 C2
A1 B4 C3
A1 B4 C4

A2 B1 C1
A2 B1 C2
A2 B1 C3
A2 B1 C4

A2 B2 C1
A2 B2 C2
A2 B2 C3
A2 B2 C4

A2 B3 C1
A2 B3 C2
A2 B3 C3
A2 B3 C4

A2 B4 C1
A2 B4 C2
A2 B4 C3
A2 B4 C4

A3 B1 C1
A3 B1 C2
A3 B1 C3
A3 B1 C4

A3 B2 C1
A3 B2 C2
A3 B2 C3
A3 B2 C4

A3 B3 C1
A3 B3 C2
A3 B3 C3
A3 B3 C4

A3 B4 C1
A3 B4 C2
A3 B4 C3
A3 B4 C4

A4 B1 C1
A4 B1 C2
A4 B1 C3
A4 B1 C4

A4 B2 C1
A4 B2 C2
A4 B2 C3
A4 B2 C4

A4 B3 C1
A4 B3 C2
A4 B3 C3
A4 B3 C4

A4 B4 C1
A4 B4 C2
A4 B4 C3
A4 B4 C4

ACoC yields
4*4*4 = 64 tests
for Triang!

This is almost
certainly more
than we need

Only 8 are valid
(all sides greater
than zero)

© Ammann & Offutt 39

ISP Criteria – Each Choice
• 64 tests for triang() is almost certainly way too many

• One criterion comes from the idea that we should try at
least one value from each block

Each Choice Coverage (ECC) : One value from each
block for each characteristic must be used in at least
one test case.

• Number of tests is the number of blocks in the largest
characteristic : Max

Q
i=1

(Bi)

For triang() :

Introduction to Software Testing, Edition 2 (Ch 6)

Substituting values:

Write down ECC tests
Use the abstract labels
(A1, A2, …)

A1, B1, C1
A2, B2, C2
A3, B3, C3
A4, B4, C4

2, 2, 2
1, 1, 1
0, 0, 0

-1, -1, -1

Suggest values …

© Ammann & Offutt 40

ISP Criteria – Pair-Wise
• Each choice yields few tests—cheap but maybe ineffective

• Another approach combines values with other values

Pair-Wise Coverage (PWC) : A value from each block for
each characteristic must be combined with a value from
every block for each other characteristic.

• Number of tests is at least the product of two largest
characteristics

For triang() :

Introduction to Software Testing, Edition 2 (Ch 6)

(Max Q
i=1

(Bi)) * (MaxQ
j=1, j!=i

(Bj))

Write down PWC tests
Use the abstract labels
(Hint: Should be 16 tests)

A1, B1, C1 A1, B2, C2 A1, B3, C3 A1, B4, C4

A2, B1, C2 A2, B2, C3 A2, B3, C4 A2, B4, C1

A3, B1, C3 A3, B2, C4 A3, B3, C1 A3, B4, C2

A4, B1, C4 A4, B2, C1 A4, B3, C2 A4, B4, C3

© Ammann & Offutt 41

ISP Criteria –T-Wise
• A natural extension is to require combinations of t values

instead of 2

t-Wise Coverage (TWC) : A value from each block for
each group of t characteristics must be combined.

• Number of tests is at least the product of t largest
characteristics

• If all characteristics are the same size, the formula is

(Max Q
i=1

(Bi))t

• If t is the number of characteristics Q, then all
combinations

• That is … Q-wise = AC

• t-wise is expensive and benefits are not clear
Introduction to Software Testing, Edition 2 (Ch 6)

© Ammann & Offutt 42

ISP Criteria – Base Choice
• Testers sometimes recognize that certain values are

important

• This uses domain knowledge of the program

Base Choice Coverage (BCC) : A base choice block is chosen
for each characteristic, and a base test is formed by using
the base choice for each characteristic. Subsequent tests
are chosen by holding all but one base choice constant and
using each non-base choice in each other characteristic.

• Number of tests is one base test + one test for each
other block 1 +

Q
i=1

(Bi -1)

For triang() : Base A1, B1, C1

Introduction to Software Testing, Edition 2 (Ch 6)

Write down BCC tests

A1, B1, C2 A1, B2, C1 A2, B1, C1

A1, B1, C3 A1, B3, C1 A3, B1, C1

A1, B1, C4 A1, B4, C1 A4, B1, C1

Base Choice Notes
• The base test must be feasible

– That is, all base choices must be compatible

• Base choices can be

– Most likely from an end-user point of view

– Simplest

– Smallest

– First in some ordering

• Happy path tests often make good base choices

• The base choice is a crucial design decision

– Test designers should document why the choices were made

Introduction to Software Testing, Edition 2 (Ch 6) © Ammann & Offutt 43

© Ammann & Offutt 44

ISP Criteria – Multiple Base Choice
• We sometimes have more than one logical base choice

Multiple Base Choice Coverage (MBCC) : At least one, and possibly
more, base choice blocks are chosen for each characteristic, and base
tests are formed by using each base choice for each characteristic at
least once. Subsequent tests are chosen by holding all but one base
choice constant for each base test and using each non-base choice in
each other characteristic.

• If M base tests and mi base choices for each characteristic:

M +
Q
i=1

(M * (Bi - mi))

Introduction to Software Testing, Edition 2 (Ch 6)

For triang() : Bases

A1, B1, C1 A1, B1, C3 A1, B3, C1 A3, B1, C1

A1, B1, C4 A1, B4, C1 A4, B1, C1

A2, B2, C2 A2, B2, C3 A2, B3, C2 A3, B2, C2

A2, B2, C4 A2, B4, C2 A4, B2, C2

© Ammann & Offutt 45

ISP Coverage Criteria Subsumption

Each Choice
Coverage

ECC

All Combinations
Coverage

ACoC

T-Wise
Coverage

TWC

Multiple Base
Choice Coverage

MBCC

Pair-Wise
Coverage

PWC

Base Choice
Coverage

BCC

Introduction to Software Testing, Edition 2 (Ch 6)

© Ammann & Offutt 46

Constraints Among Characteristics
• Some combinations of blocks are infeasible

– “less than zero” and “scalene” … not possible at the same time

• These are represented as constraints among blocks

• Two general types of constraints

– A block from one characteristic cannot be combined with a
specific block from another

– A block from one characteristic can ONLY BE combined with a
specific block form another characteristic

• Handling constraints depends on the criterion used

– ACC, PWC, TWC : Drop the infeasible pairs

– BCC, MBCC : Change a value to another non-base choice to find
a feasible combination

Introduction to Software Testing, Edition 2 (Ch 6)

(6.3)

© Ammann & Offutt 47

Example Handling Constraints
public boolean findElement (List list, Object element)

// Effects: if list or element is null throw NullPointerException

// else return true if element is in the list, false otherwise

Introduction to Software Testing, Edition 2 (Ch 6)

Characteristic Block 1 Block 2 Block 3 Block 4

A : length and contents One element
More than one,
unsorted

More than
one, sorted

More than
one, all
identical

B : match
element not
found

element found
once

element
found more
than once

Invalid combinations : (A1, B3), (A4, B2)

element cannot be in a
one-element list more
than once

If the list only has one
element, but it appears
multiple times, we
cannot find it just once

© Ammann & Offutt 48

Input Space Partitioning Summary

• Fairly easy to apply, even with no automation

• Convenient ways to add more or less testing

• Applicable to all levels of testing – unit, class, integration,
system, etc.

• Based only on the input space of the program, not the
implementation

Introduction to Software Testing, Edition 2 (Ch 6)

Simple, straightforward, effective,
and widely used

