CS 5154

Graph Coverage Criteria

Owolabi Legunsen

The following are modified versions of the publicly-available slides for Chapter 7 in the Ammann and Offutt Book, "Introduction to Software Testing"
(http://www.cs.gmu.edu/~offutt/softwaretest)

Graph Coverage

Four Structures for Modeling Software

Use cases

Covering Graphs

- Graphs are the most commonly used structure for testing
- Graphs can come from many sources
- Control flow graphs
- Design structure
- FSMs and statecharts
- Use cases
- Tests usually are intended to "cover" the graph somehow

Why Graph Coverage?

- Some of the most widely-used coverage criteria
- The "R" in the RIPR model
- Graph coverage criteria help create tests that reach different parts of software

The next two classes

- Today:
- Review of graph concepts
- Coverage criteria defined over generic graphs
- Next class (depending on progress today):
- Apply concepts learned in today's class to source code
- Not in CS 5154
- Applying graph coverage criteria to design, specs, and use cases

Definition of a Graph

- A set N of nodes, N is not empty
- A set N_{0} of initial nodes, N_{0} is not empty
- A set N_{f} of final nodes, N_{f} is not empty
- A set E of edges, each edge from one node to another
- ($\left.n_{i}, n_{j}\right), i$ is predecessor, j is successor

$$
\begin{aligned}
N_{0} & =\{1\} \\
N_{f} & =\{1\} \\
E & =\{ \}
\end{aligned}
$$

Example Graphs

Paths in Graphs

- Path : A sequence, p, of nodes $\left[n_{1}, n_{2}, \ldots, n_{M}\right]$ s.t. there is an edge between each pair of nodes in p
- Length of a path : The number of edges in p
- A single node is a path of length 0
- Subpath : A subsequence of nodes in p is a subpath of p

Test Paths and SESE graphs

- Test Path : A path that starts at an initial node and ends at a final node
- Test paths represent execution of test cases
- Some test paths can be executed by many tests
- Some test paths cannot be executed by any tests
- SESE graphs : All test paths start at a single node and end at another node
- Single-entry, single-exit
- N_{0} and N_{f} have exactly one node

Double-diamond graph Four test paths

$$
\begin{aligned}
& {[1,2,4,5,7]} \\
& {[1,2,4,6,7]} \\
& {[1,3,4,5,7]} \\
& {[1,3,4,6,7]}
\end{aligned}
$$

Visiting and Touring

- Visit : A test path p visits node n if n is in p

A test path p visits edge e if e is in p

- Tour : A test path p tours subpath q if q is a subpath of p

Test path [1, 2, 4, 5, 7]
Visits nodes ? 1, 2, 4, 5, 7
Visits edges ? $(1,2),(2,4),(4,5),(5,7)$
Tours subpaths? $[1,2,4],[2,4,5],[4,5,7],[1,2,4,5]$,

$$
[2,4,5,7],[1,2,4,5,7]
$$

(Also, each edge is technically a subpath)

Tests and Test Paths

- path (t) : The test path executed by test t
- path (T) : The set of test paths executed by set of tests T
- Each test executes one and only one test path
- Complete execution from a start node to a final node

$$
\begin{aligned}
& \text { I.s the last bonlet true? } \\
& \text {-recursion }
\end{aligned}
$$

Tests and Test Paths (2)

- A location in a graph (node or edge) can be reached from another location if there is a sequence of edges from the first location to the second
- Syntactic reach : A subpath exists in the graph
- Semantic reach : A test exists that can execute that subpath
- This distinction (semantic vs syntactic) is important when applied to source code

Tests and Test Paths (3)

Test Path

test 3

Deterministic software: a test always execute same test path

Non-deterministic software: a test can execute >I test paths

Testing and Covering Graphs

- We use graphs in testing as follows :
- Develop a model of the software as a graph
- Require tests to visit/tour sets of nodes, edges or sub-paths

Testing and Covering Graphs (2)

- Test Requirements (TR) : Describe properties of test paths
- Test Criterion : Rules that define test requirements
- Satisfaction : Given a set TR of test requirements for a criterion C, a set of tests T satisfies C on a graph if and only if for every test requirement tr in $T R$, there is a test path in path (T) that meets the test requirement tr

Two kinds of graph coverage criteria

I. Structural Coverage Criteria : Defined on a graph just in terms of nodes and edges
2. Data Flow Coverage Criteria : Requires a graph to be annotated with references to variables

Node Coverage

- The first (and simplest) two criteria require that each node and edge in a graph be executed

Node Coverage (NC) : Test set T satisfies node coverage on graph G iff for every syntactically reachable node \boldsymbol{n} in N, there is some path p in path(T) such that p visits n.

- This statement is a bit cumbersome, so we abbreviate it in terms of the set of test requirements

> Node Coverage (NC): TR contains each reachable node in G.

Edge Coverage

- Edge coverage is slightly stronger than node coverage

Edge Coverage (EC) : TR contains each reachable path of ength up to Dinclusive, in \mathbf{G}.

- The phrase "length up to l " allows for graphs with one node and no edges

Node and Edge Coverage

- NC and EC are only different when there is an edge and another subpath between a pair of nodes (as in an "ifelse" statement)

Node Coverage : ? TR = \{ 1, 2, 3 \}
Test Path = [1, 2, 3]
Edge Coverage : ? TR = \{(1, 2), (1, 3), (2, 3) \} Test Paths = [1, 2, 3] V $[1,3]$

Paths of Length 1 and 0

- A graph with only one node will not have any edges
- It may seem trivial, but formally, Edge Coverage needs to require Node Coverage on this graph
- Else, Edge Coverage will not subsume Node Coverage
- So, we define "length up to 1 " instead of simply "length 1 "
- We have the same issue with graphs that only have one edge - for Edge-Pair Coverage ...

Covering Multiple Edges

- Edge-pair coverage requires pairs of edges, or subpaths of length 2
Edge-Pair Coverage (EPC) : TR contains each reachable path of length up to 2 , inclusive, in \mathbf{G}.
- The phrase "length up to 2 " is used to include graphs that have less than 2 edges

$$
\begin{aligned}
& \text { Edge-Pair Coverage : ? } \\
& \text { TR }=\{[1,4,5],[1,4,6],[2,4,5] \text {, } \\
& [2,4,6],[3,4,5],[3,4,6]\}
\end{aligned}
$$

- A logical extension is to require covering all paths ...

Covering Multiple Edges

Complete Path Coverage (CPC): TR contains all paths in G.

Unfortunately, this is impossible if the graph has a loop, so a weak compromise makes the tester decide which paths:

Specified Path Coverage (SPC) : TR contains a set S of test paths, where S is supplied as a parameter.

Structural Coverage Example

Node Coverage

$$
T R=\{1,2,3,4,5,6,7\}
$$

$$
\text { Test Paths: }[1,2,3,4,7][1,2,3,5,6,5,7]
$$

Edge Coverage

$\operatorname{TR}=\{(1,2),(1,3),(2,3),(3,4),(3,5),(4,7),(5,6),(5,7)$, $(6,5)\}$
Test Paths: [1, 2, 3, 4, 7] [1, 3, 5, 6, 5, 7]

Edge-Pair Coverage

$\operatorname{TR}=\{[1,2,3],[1,3,4],[1,3,5],[2,3,4],[2,3,5],[3,4,7]$,

$$
[3,5,6],[3,5,7],[5,6,5],[6,5,6],[6,5,7]\}
$$

Test Paths: $[1,2,3,4,7][1,2,3,5,7][1,3,4,7]$ $[1,3,5,6,5,6,5,7][1,3,5,7]$

Complete Path Coverage

Test Paths: [1, 2, 3, 4, 7] [1, 2, 3, 5, 7] [1, 2, 3, 5, 6, 5, 7] [1, 2, 3, 5, 6, 5, 6, 5, 7] [1, 2, 3, 5, 6, 5, 6, 5, 6, 5, 7] ...

Handling Loops in Graphs

- If a graph contains a loop, it has an infinite number of paths
- Thus, Complete Path Coverage is not feasible
- SPC is not satisfactory because the results are subjective and vary with the tester
- Attempts to "deal with" loops:
- 1970s : Execute cycles once ([5, 6, 5] in previous example, informal)
- 1980s : Execute each loop, exactly once (formalized)
- 1990s: Execute loops 0 times, once, more than once (informal description)
- 2000s : Prime paths (touring, sidetrips, and detours)

Simple Paths and Prime Paths

- Simple Path : A path from node n_{i} to n_{j} is simple if no node appears more than once, except possibly the first and last nodes are the same
- No internal loops
- A loop is a simple path

$$
\begin{aligned}
& {[2,5,6,5,7]^{x}} \\
& {[5,6,5]}
\end{aligned}
$$

- Prime Path : A simple path that does not appear as a proper subpath of any other simple path

Simple Paths : $[1,2,4,1],[1,3,4,1],[2,4,1,2],[2,4,1,3]$, $[3,4,1,2],[3,4,1,3],[4,1,2,4],[4,1,3,4],[1,2,4],[1,3,4]$, $[2,4,1],[3,4,1],[4,1,2],[4,1,3],[1,2],[1,3],[2,4],[3,4]$, [4,1], [1], [2], [3], [4]

Prime Paths : $[2,4,1,2],[2,4,1,3],[1,3,4,1],[1,2,4,1]$, [3,4,1,2], [4,1,3,4], [4,1,2,4], [3,4,1,3]

Prime Path Coverage

- A simple, elegant and finite criterion that requires loops to be executed as well as skipped

Prime Path Coverage (PPC) : TR contains each prime path in G.

- Will tour all paths of length $0,1, \ldots$
- That is, it subsumes node and edge coverage
- PPC almost, but not quite, subsumes EPC ...

Why does PPC not subsume EPC?

PPC Does Not Subsume EPC

- If a node n has an edge to itself (self edge), EPC requires $[n, n, m]$ and $[m, n, n]$
- Neither $[n, n, m]$ nor $[m, n, n]$ are simple paths (not prime)

> PPC Requirements : ?
> TR = \{ $[1,2,3],[2,2]\}$

Prime Path Example

- The previous example has 38 simple paths
- Only nine prime paths

Touring, Sidetrips, and Detours

- Prime paths have no internal loops ... test paths might
- Tour : A test path p tours subpath q if q is a subpath of p
- Tour With Sidetrips : A test path p tours subpath q with sidetrips iff every edge in q is also in p in the same order
- Tour can have a sidetrip if it comes back to the same node
- Tour With Detours : A test path p tours subpath q with detours iff every node in q is also in p in the same order
- Tour can have a detour from node $n_{i j}$ if it returns to the prime path at a successor of n_{i}

Sidetrips and Detours Example

Dealing with Infeasible TRs

- An infeasible test requirement cannot be satisfied
- Unreachable statement (dead code)
- Subpath that can only be toured if a contradiction holds, e.g., if $(x>0$ and $(x<0)$
- Most test criteria have some infeasible test requirements
- It is usually undecidable whether all test requirements are feasible

Infeasible TRs and Sidetrips

- When sidetrips are not allowed, many structural criteria have more infeasible test requirements
- However, always allowing sidetrips weakens the test criteria

Practical recommendation-Best Effort Touring

 - First, satisfy as many test requirements as possible without sidetrips- Then, allow sidetrips to try to satisfy remaining test requirements

Simple path \& prime path example

"!" Means "cannot be extended to a simple path"

Round Trips

- Round-Trip Path : A prime path that starts and ends at the same node

Simple Round Trip Coverage (SRTC) : TR contains at least one round-trip path for each reachable node in G that begins and ends a round-trip path.

Complete Round Trip Coverage (CRTC) : TR contains all round-trip paths for each reachable node in \mathbf{G}.

- The criteria omit nodes \& edges that are not in round trips
- They do not subsume edge-pair, edge, or node coverage

Data Flow Criteria

Goal : Ensure that values are computed and used correctly

- Definition (def) : A location where a value for a variable is stored into memory
- Use : A location where a variable's value is accessed

$$
\begin{aligned}
& \text { Defs: } \operatorname{def}(1)=\{\mathbf{X}\} \\
& \text { def }(5)=\{\mathbb{Z}\} \begin{array}{l}
\text { Fill in } \\
\text { these }
\end{array} \\
& \operatorname{def}(6)=\{\mathbb{Z}\} \text { sets } \\
& \text { Uses: use (5) }=\{\mathbf{X}\} \\
& \text { use (6) }=\{\mathbf{X}\}
\end{aligned}
$$

The values given in defs should reach at least one, some, or all possible uses

DU Pairs and DU Paths

- def (n) or def (e) :The set of variables that are defined by node n or edge e
- use (n) or use (e) : The set of variables that are used by node n or edge e
- DU pair: A pair of locations $\left(l_{i}, l_{j}\right)$ such that a variable v is defined at l_{i} and used at l_{j}
- Def-clear : A path from I_{i} to l_{j} is def-clear with respect to variable v if v is not given another value on any of the nodes or edges in the path
- Reach : If there is a def-clear path from I_{i} to I_{j} with respect to v, the def of v at I_{i} reaches the use at l_{j}
- du-path :A simple subpath that is def-clear with respect to v from a def of v to a use of v
- du $\left(n_{i}, n_{j}, v\right)$ - the set of du-paths from n_{i} to n_{j}
- du $\left(n_{i}, v\right)$ - the set of du-paths that start at n_{i}

Touring DU-Paths

- A test path p du-tours subpath d with respect to v if p tours d and d is def-clear with respect to v
- Sidetrips can be used, just as with previous touring
- Three criteria
- Use every def
- Get to every use
- Follow all du-paths

Data Flow Test Criteria

- First, we make sure every def reaches a use

All-defs coverage (ADC) : For each set of du-paths $S=d u$ (n, v), TR contains at least one path d in S.

- Then we make sure that every def reaches all possible uses

All-uses coverage (AUC) : For each set of du-paths to uses $S=d u\left(n_{i}, n_{j}, v\right)$,TR contains at least one path d in S.

- Finally, we cover all the paths between defs and uses

All-du-paths coverage (ADUPC) : For each set $S=d u$ (ni, $n j, v)$, TR contains every path d in S.

Data Flow Testing Example

All-defs for X [1, 2, 4, 5]

All-uses for X
[$1,2,4,5$]
[1, 2, 4, 6]

All-du-paths for X
[1, 2, 4, 5]
$[1,3,4,5]$
[1, 2, 4, 6]
[1, 3, 4, 6]

Graph-based criteria subsumption

Summary

- Graphs are a very powerful abstraction for designing tests
- The various criteria allow lots of cost / benefit tradeoffs
- These two sections are entirely at the "design abstraction level" from chapter 2
- Graphs appear in many situations in software
- Next: we will apply these criteria to source code
- Design, specs, and use cases are not covered in CS 5I54

