CS 5154

Graph Coverage Criteria

Owolabi Legunsen

~

The following are modified versions of the publicly-available slides for Chapter 7
in the Ammann and Offutt Book, “Introduction to Software Testing”
(http://www.cs.gmu.edu/~offutt/softwaretest)

Graph Coverage

our Structures fc
odeling Softwars

J

opn

Applied
to

Source FSMs

O\

EScurce I Sece

Jse case:

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Covering Graphs

« Graphs are the most commonly used structure for testing

« Graphs can come from many sources
— Control flow graphs
— Design structure
— FSMs and statecharts

— Use cases

 Tests usually are intended to “cover” the graph somehow

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Why Graph Coverage?

« Some of the most widely-used coverage criteria

e« The “R” in the RIPR model

— Graph coverage criteria help create tests that reach different
parts of software

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

The next two classes

« Today:
— Review of graph concepts

— Coverage criteria defined over generic graphs

« Next class (depending on progress today):

— Apply concepts learned in today’s class to source code

« Not in CS 5154

— Applying graph coverage criteria to design, specs, and use cases

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Definition of a Graph

A set N of nodes, N is not empty
A set N, of initial nodes, N, is not empty
A set N:of final nodes, N;is not empty

A set E of edges, each edge from one node to another

—(n;, n;), iis predecessor, j is successor

\
b\ No={1}

Is this a % N,={1)

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

_Example Graphs

O3 O

N,={1} \ N,={1,2, 3}

N;={4} N:;={8,9,10}

E={(1I 2)’ E={(1I4)I (1l5)l (2I5)I (3I6)l E={(1I2)l
(1I3)I (2l4)l (3I 7)’ (4l 8)’ (5I8)l (5I9)I (1I3)I (2l4)l
:s4)r ., (6,2) (6,10),(7,10) (9,6)} (3,4)}

Paths in Graphs

 Path : A sequence, p, of nodes [n}, n,, ..., ny] s.t. there is
an edge between each pair of nodes in

 Length of a path : The number of edges in p
— A single node is a path of length 0

 Subpath : A subsequence of nodes in p is a subpath of p

LZ/Q 1,611

A Few Paths

[1,4,8]

(6) (7) [2,5,9,6,2]

\J [3,7,10]
© @

ing, Edition2 (Ch 07) © Ammann & Offutt

Test Paths and SESE graphs

« Test Path : A path that starts at an initial node and ends
at a final node

 Test paths represent execution of test cases

— Some test paths can be executed by many tests

— Some test paths cannot be executed by any tests

« SESE graphs : All test paths start at a single node and end
at another node

— Single-entry, single-exit

— Ng and N; have exactly one node

(2
-~ @
©

Double-diamond graph

e Four test paths

a 1,2,4,5,7]
1,2, 4,6, 7]
1,3,4,5,7]

[1,3,4,6,7]

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Visiting and Touring

* Visit : A test path p visits node nif nis in p
A test path p visits edge e if e is in p

« Tour : A test path p tours subpath q if g is a subpath of p

Testpath[1,2,4,5,7]
Visits nodes? 1,2,4,5,7
Visits edges ? (1,2), (2,4), (4, 5), (5, 7)

Tours SprathS ? [13234]9 [29495]9 [49597]9 [1929495]9
12,4,5,7], [1,2,4,5,7]

(Also, each edge is technically a subpath)

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Tests and Test Paths

« path (t) : The test path executed by test t
« path (7) : The set of test paths executed by set of tests T

 Each test executes one and only one test path

— Complete execution from a start node to a final node

To A ook gk e

(o

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Tests and Test Paths (2)

A location in a graph (node or edge) can be reached from
another location if there is a sequence of edges from the
first location to the second

— Syntactic reach : A subpath exists in the graph

— Semantic reach : A test exists that can execute that subpath

— This distinction (semantic vs syntactic) is important when
applied to source code

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Tests and Test Paths (3)

test 1l — many-to-one

f Test

L — Path

test3 —

Deterministic software: a test always execute same test path

M)'-toy-man — Test Path 1

test 1 N

test 2 > Test Path 2

test 3 e Test Path 3

Non-deterministic software: a test can execute >1 test paths

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Testing and Covering Graphs

» We use graphs in testing as follows :

— Develop a model of the software as a graph

— Require tests to visit/tour sets of nodes, edges or sub-paths

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Testing and Covering Graphs (2)

Test Requirements (TR) : Describe properties of test paths

Test Criterion : Rules that define test requirements

Satisfaction : Given a set TR of test requirements for a criterion C, a set
of tests T satisfies C on a graph if and only if for every test requirement tr
in TR, there is a test path in path(T) that meets the test requirement tr

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Two kinds of graph coverage criteria

Structural Coverage Ciriteria : Defined on a graph just in
terms of nodes and edges

Data Flow Coverage Criteria : Requires a graph to be
annotated with references to variables

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Node Coverage

The first (and simplest) two criteria require that each
node and edge in a graph be executed

Node Coverage (NC) : Test set T satisfies node coverage
on graph G iff for every syntactically reachable node n in
N, there is some path p in path(T) such that p visits n.

This statement is a bit cumbersome, so we abbreviate it in terms of
the set of test requirements

o < "
in G.

© Ammann & Offutt

Introduction to Software Testing, Edition 2 (Ch 07)

Edge Coverage

 Edge coverage is slightly stronger than node coverage

Edge Coverage (EC) : TR contains each reachable path of
S!ength up to Linclusive, in G.

« The phrase “length up to I” allows for graphs with one
node and no edges

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Node and Edge Coverage

« NC and EC are only different when there is an edge and
another subpath between a pair of nodes (as in an “if-
else” statement)

Node Coverage: ? TR={1,2,3}
Test Path=[1,2,3]

Edge Coverage:? TR ={(1,2), (1, 3),(2,3) }
Test Paths=[1,2,3] |/
[1,3]

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Paths of Length 1 and O

A graph with only one node will not have any edges
!

O

It may seem trivial, but formally, Edge Coverage needs to
require Node Coverage on this graph

Else, Edge Coverage will not subsume Node Coverage
— So, we define “length up to 1” instead of simply “length 1”

only have one edge — for Edge-Pair
Coverage ...

We have the same issue with graphs that i

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Covering Multiple Edges

 Edge-pair coverage requires pairs of edges, or subpaths of
length 2

Edge-Pair Coverage (EPC) : TR contains each reachable
path of length up to 2, inclusive,in G.

« The phrase “length up to 2” is used to include graphs that
have less than 2 edges

E Edge-Pair Coverage : ?
Q 0 TR = { [1,4,5], [1,4,6], [2,4,5],
[29496]9 [39495]9 [3,4,6] }

A logical extension is to require covering all paths ...

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Covering Multiple Edges

Complete Path Coverage (CPC) : TR contains all paths in G.

Unfortunately, this is impossible if the graph has a loop, so a
weak compromise makes the tester decide which paths:

Specified Path Coverage (SPC) : TR contains a set S of
test paths, where S is supplied as a parameter.

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Structural Coverage Example

Node Coverage
TR={1,2,3,4,5,6,7}
Test Paths:[1,2,3,4,7][1,2,3,5,6,5,7]

Edge Coverage
TR={(1,2),,3),(2,3),3,4),3,5), 47, (5, 6), (5, 7),

(6,5) } ;
Test Paths:[1,2,3,4,7][1,3,5,6,5,7]

Edge-Pair Coverage
TR = { [19293]9 [19394]9 [19395]9 [29394]9 [29395]9 [39497]9
3,5,61, [3,5,71, [5,6,5], [6,5,6], [6,5,7] }
Test Paths:[1,2,3,4,7][1,2,3,5,7]1[1,3,4,7]
[1,3,5,6,5,6,57]1 [\,2 6,7)

Complete Path Coverage
Test Paths:[1,2,3,4,7]1[1,2,3,5,7][1,2,3,5,6,5,7]
[1,2,3,5,6,5,6,5,7]1[1,2,3,5,6,5,6,5,6,5,7] ...

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Handling Loops in Graphs

If a graph contains a loop, it has an infinite number of paths
Thus, Complete Path Coverage is not feasible

SPC is not satisfactory because the results are subjective
and vary with the tester

Attempts to “deal with” loops:
— |1970s : Execute cycles once ([5, 6, 5] in previous example, informal)
— 1980s : Execute each loop, exactly once (formalized)
— 1990s : Execute loops 0 times, once, more than once (informal description)

— 2000s : Prime paths (touring, sidetrips, and detours)

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Simple Paths and Prime Paths

» Simple Path : A path from node n; to n; is simple if no node
appears more than once, except possibly the first and last
nodes are the same

— No internal loops E 2,5, é/);/q'j %
— A loop is a simple path [5/ 57 ;} J

« Prime Path : A simple path that does not appear as a proper

subpath of any other simple path

Simple Paths : [1323431]9 [1333491]9 [2949192]9 [2949193]9
[3,4,1,2], [3,4,1,3], [4,1,2,4], [4,1,3,4], [1,2,4], [1,3,4],
[2,4,1], [3,4,1], [4,1,2], [4,1,3], [1,2], [1,3], [2,4], [3,4],
(4,11, [1], [2], [3], [4]

Prime Paths : [2949192]9 [2949193]9 [1939491]9 [1929491]9
[3,4,1,2], [4,1,3,4], [4,1,2,4], [3,4,1,3]

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Prime Path Coverage

A simple, elegant and finite criterion that requires loops
to be executed as well as skipped

Prime Path Coverage (PPC) : TR contains each prime path
in G.

» Will tour all paths of length O, 1, ...

« That is, it subsumes node and edge coverage

« PPC almost, but not quite, subsumes EPC ...

V\\\""Q CoLS V«C nol Qubgniit el

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 28

PPC Does Not Subsume EPC

* If a node n has an edge to itself (self edge), EPC
requires [n, n, m] and [m, n, n]

 Neither [n, n, m] nor [m, n, n] are simple paths

(not prime)
EPC Requirements.; ?
TR={ [1,2,31@1,@@

PPC Requirements : ?
TR={[1,23],[2,2] }

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Prime Path Example

« The previous example has 38 simple paths

 Only nine prime paths

Prime Paths
1,2,3,4,7]

[1,2,3,5,7] Execute
[1,2,3,5, 6] loop 0 times
[1, 3,4, 7]
1, 3,5, 7] Execute
Lase—

loop once
6,5, 7]

[6,5,6] — Execute loop
BN more than once

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Touring, Sidetrips, and Detours

Prime paths have no internal loops ... test paths might

Tour : A test path p tours subpath q if q is a subpath of p

Tour With Sidetrips : A test path p tours subpath g with
sidetrips iff every edge in q is also in p in the same order

« Tour can have a sidetrip if it comes back to the same node

Tour With Detours : A test path p tours subpath g with
detours iff every node in q is also in p in the same order

« Tour can have a detour from node n, if it returns to the prime
path at a successor of n,

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Sidetrips and Detours Example

Touring the prime path
[l,2,3,5,6] without
sidetrips or detours

Touring with a
sidetrip

Touring with a
detour

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Dealing with Infeasible TRs

« An infeasible test requirement cannot be satisfied

— Unreachable statement (dead code)

_h thnly be toured if a contradiction holds, e.g., if
4’ and

« Most test criteria have some infeasible test requirements

* |t is usually undecidable whether all test requirements are
feasible

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Infeasible TRs and Sidetrips

« When sidetrips are not allowed, many structural criteria
have more infeasible test requirements

« However, always allowing sidetrips weakens the test
criteria

Practical recommendation—Best Effort Touring

— First, satisfy as many test requirements as
possible without sidetrips

—Then, allow sidetrips to try to satisfy
remaining test requirements

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Simple path & prime path example

“!” Means “cannot be extended to a simple path”

Simple ||Len0 |}/Len1 | |Len2

paths || [1] [1,2] 1,2, 3]
2] 11, 3] 1,3, 4]
3] 2, 3] 1,3, 5]
[4] 3, 4] 2,3, 4]

@ 5] 3, 5] 12,3, 5]
[4,7] !

N [6] [3,4,7] !

e 71t |57 1 3,5,7) ! :
S, 6] , !
6, 5]
OO [6,5,7] ! 7 means path

NG, 5, 6 cycles

< g Prime Paths ?

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Round Trips

« Round-Trip Path : A prime path that starts and ends at the
same node

Simple Round Trip Coverage (SRTC) : TR contains at
least one round-trip path for each reachable node in G
that begins and ends a round-trip path.

Complete Round Trip Coverage (CRTC) : TR contains all
round-trip paths for each reachable node in G.

« The criteria omit nodes & edges that are not in round trips

» They do not subsume edge-pair, edge, or node coverage

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Data Flow Criteria

Goal : Ensure that values are computed and used correctly

» Definition (def) : A location where a value for a variable is
stored into memory

« Use : A location where a variable’s value is accessed
= X Defs:def (1) ={ X } |

X =42 0 o def 5)={ Z } F;)II in
- (4 (7) def (6)={ Z } sums
e G Uses:use (5) ={ X }

Z=X-8 use (6) ={ X }

The values given in defs should reach at least one, some, or
all possible uses

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

DU Pairs and DU Paths

* def (n) or def (e) :The set of variables that are defined by node n
or edge e

* use (n) or use (e) :The set of variables that are used by node n or
edge e

* DU pair :A pair of locations (I,) such that a variable v is
defined at |, and used at |,

* Def-clear :A path from |; to | is def-clear with respect to variable
v if v is not given another value on any of the nodes or edges in
the path

* Reach :If there is a def-clear path from /; to | with respect to v,
the def of v at |, reaches the use at |,

* du-path : A simple subpath that is def-clear with respect to v
from a def of v to a use of v

* du (n; n, v) — the set of du-paths from n; to n,

* du (n, v) — the set of du-paths that start at n,

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Touring DU-Paths

« A test path p du-tours subpath d with respect to v if p tours
d and d is def-clear with respect to v

« Sidetrips can be used, just as with previous touring

« Three criteria
— Use every def
— Get to every use
— Follow all du-paths

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Data Flow Test Criteria

» First, we make sure every def reaches a use

All-defs coverage (ADC) : For each set of du-paths S = du
(n,v), TR contains at least one path d in S.

Then we make sure that every def reaches all possible
uses

All-uses coverage (AUC) : For each set of du-paths to
uses S = du (n, n;, v), TR contains at least one path d in S.

Finally, we cover all the paths between defs and uses

All-du-paths coverage (ADUPCQC) : For each set S = du (ni,
nj,v), TR contains every path d in S.

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Data Flow Testing Example

7. = X*2

x-S ©
() (4 (2
© ©

Z7.=X-8

All-defs for X All-uses for X All-du-paths for X

[1,2,4,5] [1,2,4,5] (1,2,4,5]
[1,2,4,6] 1,3,4,5]
(1,2,4,6 |

(1,3,4,6]

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Graph-based criteria subsumption

Complete
Path Coverage

CPC

¢

Prime Path
Coverage

PPC

All-DU-Paths

Coverage
Edge-Pair
ADUP Co%e rage

l EPC
All-uses l Complete Round

Coverage Trip Coverage

Edge
AUC Covelgf'age CRTC

} EC |

All-defs Simple Round
Coverage i Trip Coverage

Node
ADC Coverage SRTC

NC

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Summary

Graphs are a very powerful abstraction for designing tests

The various criteria allow lots of cost / benefit tradeoffs

These two sections are entirely at the “design abstraction
level” from chapter 2

Graphs appear in many situations in software
— Next: we will apply these criteria to source code

— Design, specs, and use cases are not covered in CS 5154

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

