
CS 5154

Graph Coverage Criteria

Owolabi Legunsen

The following are modified versions of the publicly-available slides for Chapter 7
in the Ammann and Offutt Book, “Introduction to Software Testing”

(http://www.cs.gmu.edu/~offutt/softwaretest)

Graph Coverage

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 2

Four Structures for
Modeling Software

Graphs LogicInput Space Syntax

Input

Models

Integ

Source

Applied
to

DNFSpecs

FSMsSource

Applied to

Use cases

Specs

Design

Source

Applied
to

Covering Graphs

• Graphs are the most commonly used structure for testing

• Graphs can come from many sources

– Control flow graphs

– Design structure

– FSMs and statecharts

– Use cases

• Tests usually are intended to “cover” the graph somehow

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 3

Why Graph Coverage?

• Some of the most widely-used coverage criteria

• The “R” in the RIPR model

– Graph coverage criteria help create tests that reach different
parts of software

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 4

The next two classes

• Today:

– Review of graph concepts

– Coverage criteria defined over generic graphs

• Next class (depending on progress today):

– Apply concepts learned in today’s class to source code

• Not in CS 5154

– Applying graph coverage criteria to design, specs, and use cases

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 5

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 6

Definition of a Graph

• A set N of nodes, N is not empty

• A set N0 of initial nodes, N0 is not empty

• A set Nf of final nodes, Nf is not empty

• A set E of edges, each edge from one node to another

– (ni , nj), i is predecessor, j is successor

1

N0 = { 1 }

Nf = { 1 }

E = { }

Is this a
graph?

Yes

Write down the
initial and final
nodes, and the
edges

Write down the
initial and final
nodes, and the
edges

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 7

Example Graphs

1

32

4

1

32

4

N0 = { }

Nf = { 4 }

E = { (1,2),
(1,3), (2,4),

(3,4) }

10

1

54

8

2

6

9

3

7

N0 = { 1, 2, 3 }

Nf = { 8, 9, 10 }

E = { (1,4), (1,5), (2,5), (3,6),
(3, 7), (4, 8), (5,8), (5,9),
(6,2), (6,10), (7,10) (9,6) }

Not a
valid
graph

Write down the
initial and final
nodes, and the
edges

N0 = { 1 }

Nf = { 4 }

E = { (1, 2),
(1,3), (2,4),

(3,4) }

Write down
three paths in
this graph

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 8

Paths in Graphs
• Path : A sequence, p, of nodes [n1, n2, …, nM] s.t. there is

an edge between each pair of nodes in p

• Length of a path : The number of edges in p

– A single node is a path of length 0

• Subpath : A subsequence of nodes in p is a subpath of p

108 9

1 2 3

54 6 7

A Few Paths

[1, 4, 8]

[2, 5, 9, 6, 2]

[3, 7, 10]

Write down all
the test paths in
this graph

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 9

Test Paths and SESE graphs

• Test Path : A path that starts at an initial node and ends
at a final node

• Test paths represent execution of test cases
– Some test paths can be executed by many tests

– Some test paths cannot be executed by any tests

• SESE graphs : All test paths start at a single node and end
at another node

– Single-entry, single-exit

– N0 and Nf have exactly one node

1

3

2

74

6

5
Double-diamond graph

Four test paths
[1, 2, 4, 5, 7]
[1, 2, 4, 6, 7]
[1, 3, 4, 5, 7]
[1, 3, 4, 6, 7]

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 10

Visiting and Touring

• Visit : A test path p visits node n if n is in p

A test path p visits edge e if e is in p

• Tour : A test path p tours subpath q if q is a subpath of p

Test path [1, 2, 4, 5, 7]

Visits nodes ?

Visits edges ?

Tours subpaths ?

1, 2, 4, 5, 7

(1,2), (2,4), (4, 5), (5, 7)

[1,2,4], [2,4,5], [4,5,7], [1,2,4,5],
[2,4,5,7], [1,2,4,5,7]

(Also, each edge is technically a subpath)

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 11

Tests and Test Paths

• path (t) : The test path executed by test t

• path (T) : The set of test paths executed by set of tests T

• Each test executes one and only one test path

– Complete execution from a start node to a final node

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 12

Tests and Test Paths (2)

• A location in a graph (node or edge) can be reached from
another location if there is a sequence of edges from the
first location to the second

– Syntactic reach : A subpath exists in the graph

– Semantic reach : A test exists that can execute that subpath

– This distinction (semantic vs syntactic) is important when
applied to source code

Test
Path

Deterministic software: a test always execute same test path

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 13

Tests and Test Paths (3)
test 1

test 2

test 3

many-to-one

test 1

test 2

test 3

many-to-many
Test Path 1

Test Path 2

Test Path 3

Non-deterministic software: a test can execute >1 test paths

test 1

test 2

test 3

many-to-one

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 14

Testing and Covering Graphs

• We use graphs in testing as follows :

– Develop a model of the software as a graph

– Require tests to visit/tour sets of nodes, edges or sub-paths

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 15

Testing and Covering Graphs (2)

• Test Requirements (TR) : Describe properties of test paths

• Test Criterion : Rules that define test requirements

• Satisfaction : Given a set TR of test requirements for a criterion C, a set
of tests T satisfies C on a graph if and only if for every test requirement tr
inTR, there is a test path in path(T) that meets the test requirement tr

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 16

Two kinds of graph coverage criteria

1. Structural Coverage Criteria : Defined on a graph just in
terms of nodes and edges

2. Data Flow Coverage Criteria : Requires a graph to be
annotated with references to variables

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 17

Node Coverage

• The first (and simplest) two criteria require that each
node and edge in a graph be executed

Node Coverage (NC) : Test set T satisfies node coverage
on graph G iff for every syntactically reachable node n in
N, there is some path p in path(T) such that p visits n.

Node Coverage (NC) : TR contains each reachable node
in G.

• This statement is a bit cumbersome, so we abbreviate it in terms of
the set of test requirements

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 18

Edge Coverage

• Edge coverage is slightly stronger than node coverage

Edge Coverage (EC) : TR contains each reachable path of
length up to 1, inclusive, in G.

• The phrase “length up to 1” allows for graphs with one
node and no edges

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 19

Node and Edge Coverage

• NC and EC are only different when there is an edge and
another subpath between a pair of nodes (as in an “if-
else” statement)

Node Coverage : ?

Edge Coverage : ?2

3

1

TR = { 1, 2, 3 }
Test Path = [1, 2, 3]

TR = { (1, 2), (1, 3), (2, 3) }
Test Paths = [1, 2, 3]

[1, 3]

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 20

Paths of Length 1 and 0
• A graph with only one node will not have any edges

• It may seem trivial, but formally, Edge Coverage needs to
require Node Coverage on this graph

1

• Else, Edge Coverage will not subsume Node Coverage

– So, we define “length up to 1” instead of simply “length 1”

2

1
• We have the same issue with graphs that

only have one edge – for Edge-Pair
Coverage …

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 21

Covering Multiple Edges
• Edge-pair coverage requires pairs of edges, or subpaths of

length 2

Edge-Pair Coverage (EPC) : TR contains each reachable
path of length up to 2, inclusive, in G.

• The phrase “length up to 2” is used to include graphs that
have less than 2 edges

• A logical extension is to require covering all paths …

Edge-Pair Coverage : ?

TR = { [1,4,5], [1,4,6], [2,4,5],
[2,4,6], [3,4,5], [3,4,6] }

2

3

5

6

1

4

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 22

Covering Multiple Edges

Complete Path Coverage (CPC) :TR contains all paths in G.

Specified Path Coverage (SPC) : TR contains a set S of
test paths, where S is supplied as a parameter.

Unfortunately, this is impossible if the graph has a loop, so a
weak compromise makes the tester decide which paths:

Structural Coverage Example

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 24

7

1

3

2

4 5

6

Node Coverage
TR =
Test Paths:

Edge Coverage
TR =

Test Paths:

Edge-Pair Coverage
TR =

Test Paths:

Complete Path Coverage
Test Paths:

Node Coverage
TR = { 1, 2, 3, 4, 5, 6, 7 }
Test Paths: [1, 2, 3, 4, 7] [1, 2, 3, 5, 6, 5, 7]

Edge Coverage
TR = { (1,2), (1, 3), (2, 3), (3, 4), (3, 5), (4, 7), (5, 6), (5, 7),
(6, 5) }
Test Paths: [1, 2, 3, 4, 7] [1, 3, 5, 6, 5, 7]

Edge-Pair Coverage
TR = { [1,2,3], [1,3,4], [1,3,5], [2,3,4], [2,3,5], [3,4,7],

[3,5,6], [3,5,7], [5,6,5], [6,5,6], [6,5,7] }
Test Paths: [1, 2, 3, 4, 7] [1, 2, 3, 5, 7] [1, 3, 4, 7]

[1, 3, 5, 6, 5, 6, 5, 7]

Complete Path Coverage
Test Paths: [1, 2, 3, 4, 7] [1, 2, 3, 5, 7] [1, 2, 3, 5, 6, 5, 7]
[1, 2, 3, 5, 6, 5, 6, 5, 7] [1, 2, 3, 5, 6, 5, 6, 5, 6, 5, 7] …

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 25

Handling Loops in Graphs

• If a graph contains a loop, it has an infinite number of paths

• Thus, Complete Path Coverage is not feasible

• SPC is not satisfactory because the results are subjective
and vary with the tester

• Attempts to “deal with” loops:
– 1970s : Execute cycles once ([5, 6, 5] in previous example, informal)

– 1980s : Execute each loop, exactly once (formalized)

– 1990s : Execute loops 0 times, once, more than once (informal description)

– 2000s : Prime paths (touring, sidetrips, and detours)

Simple Paths and Prime Paths

• Simple Path : A path from node ni to nj is simple if no node
appears more than once, except possibly the first and last
nodes are the same

– No internal loops

– A loop is a simple path

• Prime Path : A simple path that does not appear as a proper
subpath of any other simple path

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 27

2 3

1

4

Simple Paths :

Prime Paths :

[1,2,4,1], [1,3,4,1], [2,4,1,2], [2,4,1,3],
[3,4,1,2], [3,4,1,3], [4,1,2,4], [4,1,3,4], [1,2,4], [1,3,4],
[2,4,1], [3,4,1], [4,1,2], [4,1,3], [1,2], [1,3], [2,4], [3,4],
[4,1], [1], [2], [3], [4]

[2,4,1,2], [2,4,1,3], [1,3,4,1], [1,2,4,1],
[3,4,1,2], [4,1,3,4], [4,1,2,4], [3,4,1,3]

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 28

Prime Path Coverage

• A simple, elegant and finite criterion that requires loops
to be executed as well as skipped

Prime Path Coverage (PPC) : TR contains each prime path
in G.

• Will tour all paths of length 0, 1, …

• That is, it subsumes node and edge coverage

• PPC almost, but not quite, subsumes EPC …

PPC Does Not Subsume EPC

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 29

2

3

1

• If a node n has an edge to itself (self edge), EPC
requires [n, n, m] and [m, n, n]

• Neither [n, n, m] nor [m, n, n] are simple paths
(not prime)

EPC Requirements : ?

TR = { [1,2,3], [1,2,2], [2,2,3], [2,2,2] }

PPC Requirements : ?

TR = { [1,2,3], [2,2] }

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 31

Prime Path Example

• The previous example has 38 simple paths

• Only nine prime paths

Prime Paths

Execute
loop once

Execute loop
more than once

6

1

3

2

4 5

7

Execute
loop 0 times

[1, 2, 3, 4, 7]
[1, 2, 3, 5, 7]
[1, 2, 3, 5, 6]

[1, 3, 4, 7]
[1, 3, 5, 7]
[1, 3, 5, 6]
[6, 5, 7]
[6, 5, 6]
[5, 6, 5]

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 32

Touring, Sidetrips, and Detours

• Prime paths have no internal loops … test paths might

• Tour : A test path p tours subpath q if q is a subpath of p

• Tour With Sidetrips : A test path p tours subpath q with
sidetrips iff every edge in q is also in p in the same order

• Tour can have a sidetrip if it comes back to the same node

• Tour With Detours : A test path p tours subpath q with
detours iff every node in q is also in p in the same order

• Tour can have a detour from node ni, if it returns to the prime
path at a successor of ni

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 33

Sidetrips and Detours Example

1 32 6

4

5

1 32 6

4

5

Touring with a
sidetrip

1 32 6

4

5

Touring with a
detour

1 2 5 6

3 4

1 2 5

3
4

1 2 3 4

Touring the prime path
[1, 2, 3, 5, 6] without
sidetrips or detours

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 34

Dealing with Infeasible TRs
• An infeasible test requirement cannot be satisfied

– Unreachable statement (dead code)

– Subpath that can only be toured if a contradiction holds, e.g., if
(X > 0 and X < 0)

• Most test criteria have some infeasible test requirements

• It is usually undecidable whether all test requirements are
feasible

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 35

Infeasible TRs and Sidetrips

Practical recommendation—Best Effort Touring

– First, satisfy as many test requirements as
possible without sidetrips

–Then, allow sidetrips to try to satisfy
remaining test requirements

• When sidetrips are not allowed, many structural criteria
have more infeasible test requirements

• However, always allowing sidetrips weakens the test
criteria

Simple path & prime path example

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 37

6

1

3

2

4 5

7

Len 0Simple
paths [1]

[2]
[3]
[4]
[5]
[6]
[7] !

Len 1
[1, 2]
[1, 3]
[2, 3]
[3, 4]
[3, 5]
[4, 7] !
[5, 7] !
[5, 6]
[6, 5]

Len 2

[1, 2, 3]
[1, 3, 4]
[1, 3, 5]
[2, 3, 4]
[2, 3, 5]
[3, 4, 7] !
[3, 5, 7] !
[3, 5, 6] !
[5, 6, 5] *
[6, 5, 7] !
[6, 5, 6] *

‘*’ means path
cycles

Len 3

[1, 2, 3, 4]
[1, 2, 3, 5]
[1, 3, 4, 7] !
[1, 3, 5, 7] !
[1, 3, 5, 6] !
[2, 3, 4, 7] !
[2, 3, 5, 6] !
[2, 3, 5, 7] !

Len 4
[1, 2, 3, 4, 7] !
[1, 2, 3, 5, 7] !
[1, 2, 3, 5, 6] !

Prime Paths ?

“!” Means “cannot be extended to a simple path”

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 38

Round Trips

• Round-Trip Path : A prime path that starts and ends at the
same node

Simple Round Trip Coverage (SRTC) : TR contains at
least one round-trip path for each reachable node in G
that begins and ends a round-trip path.

Complete Round Trip Coverage (CRTC) : TR contains all
round-trip paths for each reachable node in G.

• The criteria omit nodes & edges that are not in round trips

• They do not subsume edge-pair, edge, or node coverage

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 39

Data Flow Criteria

• Definition (def) : A location where a value for a variable is
stored into memory

• Use : A location where a variable’s value is accessed

Goal : Ensure that values are computed and used correctly

1

3

2

74

6

5
X = 42

Z = X-8

Z = X*2 Defs: def (1) = { }

def (5) = { }

def (6) = { }

Uses: use (5) = { }

use (6) = { }

The values given in defs should reach at least one, some, or
all possible uses

X

Z

Z

X

X

Fill in
these
sets

DU Pairs and DU Paths

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 40

• def (n) or def (e) : The set of variables that are defined by node n
or edge e

• use (n) or use (e) : The set of variables that are used by node n or
edge e

• DU pair : A pair of locations (li, lj) such that a variable v is
defined at li and used at lj

• Def-clear : A path from li to lj is def-clear with respect to variable
v if v is not given another value on any of the nodes or edges in
the path
• Reach : If there is a def-clear path from li to lj with respect to v,
the def of v at li reaches the use at lj

• du-path : A simple subpath that is def-clear with respect to v
from a def of v to a use of v
• du (ni, nj, v) – the set of du-paths from ni to nj

• du (ni, v) – the set of du-paths that start at ni

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 41

Touring DU-Paths

• A test path p du-tours subpath d with respect to v if p tours
d and d is def-clear with respect to v

• Sidetrips can be used, just as with previous touring

• Three criteria

– Use every def

– Get to every use

– Follow all du-paths

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 42

Data Flow Test Criteria

All-defs coverage (ADC) : For each set of du-paths S = du
(n, v),TR contains at least one path d in S.

All-uses coverage (AUC) : For each set of du-paths to
uses S = du (ni, nj, v),TR contains at least one path d in S.

All-du-paths coverage (ADUPC) : For each set S = du (ni,
nj, v),TR contains every path d in S.

• Then we make sure that every def reaches all possible
uses

• Finally, we cover all the paths between defs and uses

• First, we make sure every def reaches a use

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 43

Data Flow Testing Example

1

3

2

74

6

5
X = 42

Z = X-8

Z = X*2

All-defs for X All-uses for X All-du-paths for X

[1, 2, 4, 5] [1, 2, 4, 5]

[1, 2, 4, 6]

[1, 2, 4, 5]

[1, 3, 4, 5]

[1, 2, 4, 6]

[1, 3, 4, 6]

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 45

Graph-based criteria subsumption

Simple Round
Trip Coverage

SRTCNode
Coverage

NC

Edge
Coverage

EC

Edge-Pair
Coverage

EPC

Prime Path
Coverage

PPC

Complete
Path Coverage

CPC

Complete Round
Trip Coverage

CRTC

All-DU-Paths
Coverage

ADUP

All-uses
Coverage

AUC

All-defs
Coverage

ADC

Summary

• Graphs are a very powerful abstraction for designing tests

• The various criteria allow lots of cost / benefit tradeoffs

• These two sections are entirely at the “design abstraction
level” from chapter 2

• Graphs appear in many situations in software

– Next: we will apply these criteria to source code

– Design, specs, and use cases are not covered in CS 5154

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 46

