
CS 5154

Applying Graph Coverage
Criteria to Source Code

Owolabi Legunsen

The following are modified versions of the publicly-available slides for Chapter 7
in the Ammann and Offutt Book, “Introduction to Software Testing”

(http://www.cs.gmu.edu/~offutt/softwaretest)

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt 2

Overview

• How to apply graph-based criteria to source code?

• Graph : Usually the control flow graph (CFG)

• Node coverage : Execute every statement

• Edge coverage : Execute every branch

• Loops : structures such as for loops, while loops, etc.

• Data flow coverage : Augment the CFG

– defs are statements that assign values to variables

– uses are statements that use variables

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt 3

Control Flow Graphs

• CFG captures control structures in method executions

• Nodes: Statements or statement sequences (basic blocks)

• Edges : Transfers of control

• Basic Block : A sequence of statements such that if the first
statement is executed, all statements will be (no branches)

• CFGs are sometimes annotated with extra information

– branch predicates, defs, uses

• Rules for translating statements into graphs …

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt 5

CFG : The if Statement

if (x < y)
{

y = 0;
x = x + 1;

}
else
{

x = y;
}

4

1

2 3

x >= yx < y

x = y
y = 0

x = x + 1

if (x < y)
{

y = 0;
x = x + 1;

}

3

1

2
x >= y

x < y

y = 0
x = x + 1

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt 6

CFG : The if-Return Statement

if (x < y)
{

return;
}
print (x);
return;

3

1

2
x >= y

x < y

return

print (x)
return

No edge from node 2 to 3.
The return nodes must be distinct.

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt 8

Loops

• Loops require “extra” nodes to be added

• Nodes that do not represent statements or basic blocks

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt 9

CFG : while and for Loops

x = 0;
while (x < y)
{

y = f (x, y);
x = x + 1;

}
return (x);

1x = 0

43

y =f(x,y)
x = x + 1

x >= yx < y

for (x = 0; x < y; x++)
{

y = f (x, y);
}
return (x);

1

x = x + 1

2

3 5

x >= yx < y

y = f (x, y)

4

2

dummy node

x = 0
implicitly

initializes loop

implicitly
increments loop

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt 11

CFG : do Loop, break and continue

x = 0;
do
{

y = f (x, y);
x = x + 1;

} while (x < y);
return (y);

1x = 0

3

2
x >= y

x < y

y = f (x, y)
x = x+1

1 x = 0

8

3

x = x + 1

break

y < 0

2

4

5

6

7

y =f(x,y)

y == 0

y = y*2
continue

x = 0;
while (x < y)
{

y = f (x, y);
if (y == 0)
{

break;
} else if (y < 0)
{

y = y*2;
continue;

}
x = x + 1;

}
return (y);

return (y)

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt 13

CFG : The case (switch) Structure

read (c) ;
switch (c)
{

case ‘N’:
z = 25;

case ‘Y’:
x = 50;
break;

default:
x = 0;
break;

}
print (x);

5

1 read (c);

c == ‘N’

x = 0;
break;

2 43

c == ‘Y’ default

x = 50;
break;

z = 25;

print (x);

Cases without breaks fall
through to the next case

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt 15

CFG : Exceptions (try-catch)

1 s = br.readLine()

8

try
{

s = br.readLine();
if (s.length() > 96)

throw new Exception
(“too long”);

if (s.length() == 0)
throw new Exception

(“too short”);
} (catch IOException e) {

e.printStackTrace();
} (catch Exception e) {

e.getMessage();
}
return (s);

2 3

4 5

6

7

IOException

e.printStackTrace()
length > 96

length <= 96

return (s)

throw

length == 0
length != 0

throw

e.getMessage()

© Ammann & Offutt

Example Control Flow – Stats
public static void computeStats (int [] numbers)
{

int length = numbers.length;
double med, var, sd, mean, sum, varsum;

sum = 0;
for (int i = 0; i < length; i++)
{

sum += numbers [i];
}
med = numbers [length / 2];
mean = sum / (double) length;

varsum = 0;
for (int i = 0; i < length; i++)
{

varsum = varsum + ((numbers [i] - mean) * (numbers [i] - mean));
}
var = varsum / (length - 1.0);
sd = Math.sqrt (var);

System.out.println ("length: " + length);
System.out.println ("mean: " + mean);
System.out.println ("median: " + med);
System.out.println ("variance: " + var);
System.out.println ("standard deviation: " + sd);

}

Introduction to Software Testing, Edition 2 (Ch 7) 17© Ammann & Offutt

Draw the graph
and label the
edges.

© Ammann & Offutt

Control Flow Graph for Stats
public static void computeStats (int [] numbers)
{

int length = numbers.length;
double med, var, sd, mean, sum, varsum;

sum = 0;
for (int i = 0; i < length; i++)
{

sum += numbers [i];
}
med = numbers [length / 2];
mean = sum / (double) length;

varsum = 0;
for (int i = 0; i < length; i++)
{

varsum = varsum + ((numbers [I] - mean) * (numbers [I] - mean));
}
var = varsum / (length - 1.0);
sd = Math.sqrt (var);

System.out.println ("length: " + length);
System.out.println ("mean: " + mean);
System.out.println ("median: " + med);
System.out.println ("variance: " + var);
System.out.println ("standard deviation: " + sd);

}

i = 0

i >= length

i < length

i++

i >= length
i < length

i = 0

i++

1

2

3

5
4

6

87

Introduction to Software Testing, Edition 2 (Ch 7) 18© Ammann & Offutt

Control Flow TRs and Test Paths—EC

1

2

3

5
4

6

87

TR Test Paths

Edge Coverage

Introduction to Software Testing, Edition 2 (Ch 7) 20© Ammann & Offutt

A. [1, 2]
B. [2, 3]
C. [3, 4]
D. [3, 5]
E. [4, 3]
F. [5, 6]
G. [6, 7]
H. [6, 8]
I. [7, 6]

[1, 2, 3, 4, 3, 5, 6, 7, 6, 8]

i A, B, D, E, F, G, I, J C, H

Control Flow TRs and Test Paths—EPC

1

2

3

5
4

6

87

TR Test Paths

Edge-Pair Coverage

TP TRs toured sidetrips

ii A, C, E, H

iii A, B, D, E, F, G, I, J, K,
L

C, H

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt 22

A. [1, 2, 3]
B. [2, 3, 4]
C. [2, 3, 5]
D. [3, 4, 3]
E. [3, 5, 6]
F. [4, 3, 5]
G. [5, 6, 7]
H. [5, 6, 8]
I. [6, 7, 6]
J. [7, 6, 8]
K. [4, 3, 4]
L. [7, 6, 7]

i. [1, 2, 3, 4, 3, 5, 6, 7, 6, 8]
ii. [1, 2, 3, 5, 6, 8]
iii. [1, 2, 3, 4, 3, 4, 3, 5, 6, 7,

6, 7, 6, 8]

TP iii makes TP i
redundant. A minimal
set of TPs is cheaper.

Control Flow TRs and Test Paths—PPC

1

2

3

5
4

6

87

TR Test Paths

Prime Path Coverage

i A, D, E, F, G H, I, J

TP TRs toured sidetrips

ii A, B, C, D, E, F, G, H, I, J

iii A, F, H J

iv D, E, F, I J

v J

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt 23

A. [3, 4, 3]
B. [4, 3, 4]
C. [7, 6, 7]
D. [7, 6, 8]
E. [6, 7, 6]
F. [1, 2, 3, 4]
G. [4, 3, 5, 6, 7]
H. [4, 3, 5, 6, 8]
I. [1, 2, 3, 5, 6, 7]
J. [1, 2, 3, 5, 6, 8]

i. [1, 2, 3, 4, 3, 5, 6, 7, 6, 8]
ii. [1, 2, 3, 4, 3, 4, 3,

5, 6, 7, 6, 7, 6, 8]
iii. [1, 2, 3, 4, 3, 5, 6, 8]
iv. [1, 2, 3, 5, 6, 7, 6, 8]
v. [1, 2, 3, 5, 6, 8]

TP ii makes
TP i redundant.

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt 25

Data Flow Coverage for Source

• def : a location where a value is stored into memory
– x appears on the left side of an assignment (e.g., x = 44;)
– x is an actual parameter in a call site & method changes x’s value
– x is a method’s formal parameter (implicit def on method start)
– x is an input to a program

• use : a location where variable’s value is accessed
– x appears on the right side of an assignment (e.g., y = sqrt(x);)
– x appears in a conditional test
– x is an actual parameter to a method
– x is an output of the program
– x is an output of a method in a return statement

• A def and a use on the same node is only a DU-pair if the
def occurs after the use and the node is in a loop

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt 26

Example Data Flow – Stats
public static void computeStats (int [] numbers)
{

int length = numbers.length;
double med, var, sd, mean, sum, varsum;

sum = 0.0;
for (int i = 0; i < length; i++)
{

sum += numbers [i];
}
med = numbers [length / 2];
mean = sum / (double) length;

varsum = 0.0;
for (int i = 0; i < length; i++)
{

varsum = varsum + ((numbers [i] - mean) * (numbers [i] - mean));
}
var = varsum / (length - 1);
sd = Math.sqrt (var);

System.out.println ("length: " + length);
System.out.println ("mean: " + mean);
System.out.println ("median: " + med);
System.out.println ("variance: " + var);
System.out.println ("standard deviation: " + sd);

}

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt 27

8

1

2

4

3

5

6

7

Control Flow Graph for Stats
(numbers)
sum = 0
length = numbers.length

i = 0

i >= length

i < length

sum += numbers [i]
i++

med = numbers [length / 2]
mean = sum / (double) length
varsum = 0
i = 0

i >= length

i < length

varsum = …
i++

var = varsum / (length - 1.0)
sd = Math.sqrt (var)
print (length, mean, med, var, sd)

Annotate with the
statements …

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt 28

8

1

2

4

3

5

6

7

CFG for Stats – With Defs & Uses

def (1) = { numbers, sum, length }

def (2) = { i }

def (5) = { med, mean, varsum, i }
use (5) = { numbers, length, sum }

def (8) = { var, sd }
use (8) = { varsum, length, mean,

med, var, sd }

use (3, 5) = { i, length }

use (3, 4) = { i, length }

def (4) = { sum, i }
use (4) = { sum, numbers, i }

use (6, 8) = { i, length }

use (6, 7) = { i, length }

def (7) = { varsum, i }
use (7) = { varsum, numbers, i, mean }

use (1) = { numbers}

Turn the annotations into
def and use sets …

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt 29

Defs and Uses Tables for Stats

Node Def Use

1 { numbers, sum,
length }

{ numbers }

2 { i }

3

4 { sum, i } { numbers, i, sum }

5 { med, mean,
varsum, i }

{ numbers, length, sum }

6

7 { varsum, i } { varsum, numbers, i,
mean }

8 { var, sd } { varsum, length, var, mean,
med, var, sd }

Edge Use

(1, 2)

(2, 3)

(3, 4) { i, length }

(4, 3)

(3, 5) { i, length }

(5, 6)

(6, 7) { i, length }

(7, 6)

(6, 8) { i, length }

Recall: DU Pairs and DU Paths

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt 30

• def (n) or def (e) : The set of variables that are defined by node n or edge e
• use (n) or use (e) : The set of variables that are used by node n or edge e

• DU pair : A pair of locations (li, lj) s.t. a variable v is defined at li and used at lj

• Def-clear : Path from li to lj is def-clear w.r.t. v if v is not given another value on
any of the nodes or edges in the path

• Reach : If there is a def-clear path from li to lj with respect to v, the def of v at li
reaches the use at lj

• du-path : A simple subpath that is def-clear w.r.t. v from a def of v to a use of v
• Def-path set, du (ni, v) – the set of du-paths that start at ni

• Def-pair set, du (ni, nj, v) – the set of du-paths from ni to nj

DU Pairs for Stats

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt 31

variable DU Pairs

numbers (1, 4) (1, 5) (1, 7)

length (1, 5) (1, 8) (1, (3,4)) (1, (3,5)) (1, (6,7)) (1, (6,8))

med (5, 8)

var (8, 8)

sd (8, 8)

mean (5, 7) (5, 8)

sum (1, 4) (1, 5) (4, 4) (4, 5)

varsum (5, 7) (5, 8) (7, 7) (7, 8)

i (2, 4) (2, (3,4)) (2, (3,5)) (2, 7) (2, (6,7)) (2, (6,8))

(4, 4) (4, (3,4)) (4, (3,5)) (4, 7) (4, (6,7)) (4, (6,8))

(5, 7) (5, (6,7)) (5, (6,8))

(7, 7) (7, (6,7)) (7, (6,8))

No def-clear path …
different scope for i

No path through graph
from nodes 5 and 7 to 4 or 3

defs come before uses,
do not count as DU pairs

defs after use in loop,
these are valid DU pairs

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt 32

DU Paths for Stats
variable DU Pairs DU Paths

numbers (1, 4)
(1, 5)
(1, 7)

[1, 2, 3, 4]
[1, 2, 3, 5]
[1, 2, 3, 5, 6, 7]

length (1, 5)
(1, 8)
(1, (3,4))
(1, (3,5))
(1, (6,7))
(1, (6,8))

[1, 2, 3, 5]
[1, 2, 3, 5, 6, 8]
[1, 2, 3, 4]
[1, 2, 3, 5]
[1, 2, 3, 5, 6, 7]
[1, 2, 3, 5, 6, 8]

med (5, 8) [5, 6, 8]

var (8, 8) No path needed

sd (8, 8) No path needed

sum (1, 4)
(1, 5)
(4, 4)
(4, 5)

[1, 2, 3, 4]
[1, 2, 3, 5]
[4, 3, 4]
[4, 3, 5]

variable DU Pairs DU Paths

mean (5, 7)
(5, 8)

[5, 6, 7]
[5, 6, 8]

varsum (5, 7)
(5, 8)
(7, 7)
(7, 8)

[5, 6, 7]
[5, 6, 8]
[7, 6, 7]
[7, 6, 8]

i (2, 4)
(2, (3,4))
(2, (3,5))
(4, 4)
(4, (3,4))
(4, (3,5))
(5, 7)
(5, (6,7))
(5, (6,8))
(7, 7)
(7, (6,7))
(7, (6,8))

[2, 3, 4]
[2, 3, 4]
[2, 3, 5]
[4, 3, 4]
[4, 3, 4]
[4, 3, 5]
[5, 6, 7]
[5, 6, 7]
[5, 6, 8]
[7, 6, 7]
[7, 6, 7]
[7, 6, 8]

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt 33

DU Paths for Stats—No Duplicates

There are 38 DU paths for Stats, but only 12 unique

[1, 2, 3, 4]
[1, 2, 3, 5]
[1, 2, 3, 5, 6, 7]
[1, 2, 3, 5, 6, 8]
[2, 3, 4]
[2, 3, 5]

[4, 3, 4]
[4, 3, 5]
[5, 6, 7]
[5, 6, 8]
[7, 6, 7]
[7, 6, 8]

4 expect a loop not to be “entered”

2 require at least two iterations of a loop

6 require at least one iteration of a loop

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt 34

Test Inputs and Test Paths

Test input: numbers = [44] ; length = 1
Test Path : [1, 2, 3, 4, 3, 5, 6, 7, 6, 8]
Additional DU Paths covered (no sidetrips)
[1, 2, 3, 4] [2, 3, 4] [4, 3, 5] [5, 6, 7] [7, 6, 8]
The five stars that require at least one iteration of a loop

Test Input : numbers = [2, 10, 15] ; length = 3
Test Path : [1, 2, 3, 4, 3, 4, 3, 4, 3, 5, 6, 7, 6, 7, 6, 7, 6, 8]
DU Paths covered (no sidetrips)
[4, 3, 4] [7, 6, 7]
The two stars that require at least two iterations of a loop

Other DU paths require arrays with length 0 to skip loops
But the method fails with index out of bounds exception…

med = numbers [length / 2]; A fault was
found

Summary

• Applying the graph test criteria to control flow graphs is
relatively straightforward

– Most of the developmental research work was done with CFGs

• A few subtle decisions must be made to translate control
structures into the graph

• Some tools will assign each statement to a unique node

– These slides and the book uses basic blocks

– Coverage is the same, although the bookkeeping will differ

Introduction to Software Testing, Edition 2 (Ch 7) 35© Ammann & Offutt

Next
• Logic coverage

• Some announcements

– Sprint 0.2 was due at 9:30am today

– Talk to me if you are in a distant time zone

– HW2 has been released on CMS, due 2/29 at 9:30am

– HW2 is to be done individually, no discussion on Ed

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt 36

