CS 5154

Applying Graph Coverage
Criteria to Source Code

Owolabi Legunsen

The following are modified versions of the publicly-available slides for Chapter 7
in the Ammann and Offutt Book, “Introduction to Software Testing”
(http://www.cs.gmu.edu/~offutt/softwaretest)

Overview

How to apply graph-based criteria to source code!?

Graph : Usually the control flow graph (CFG)
Node coverage : Execute every statement

Edge coverage : Execute every branch

Loops : structures such as for loops, while loops, etc.

Data flow coverage : Augment the CFG
— defs are statements that assign values to variables

— uses are statements that use variables

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt

Control Flow Graphs

CFG captures control structures in method executions

Nodes: Statements or statement sequences (basic blocks)

Edges : Transfers of control

Basic Block : A sequence of statements such that if the first
statement is executed, all statements will be (no branches)

CFGs are sometimes annotated with extra information

— branch predicates, defs, uses

 Rules for translating statements into graphs ...

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt

CFG : The if Statement

if (x <vy)

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt

CFG : The iIf-Return Statement

if (x<vy)

{
return; L

} X>=y
print (x);

return; é,_ | _
print (x)
return

No edge from node 2 to 3.
The return nodes must be distinct.

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt

Loops

+ Loops require “extra” nodes to be added

* Nodes that do not represent statements or basic blocks

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt

CFG : while and for Loops

x=0;
while (x <) l dummy node

{

y =f(x,y); « S implicitly

X=x+1;

for (x‘= 0;)\(2; é:")
{

}

return (x);

initializes loop

}

return (x);

y =f(x,y);

implicitly
increments loop

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt

CFG : do Loop, break and continue
x = 0; !

while (x <y) @x = 0

{
y=f(x,y); y=f(x,y);
X=x+1; if (y == 0)

} while (x < y); {

return (y); break;

} else if (y < 0)

{
y =y*2;
continue;

}

X=x+1;

}

return (y);

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt

CFG : The case (switch) Structure

read (c) ;
switch (c)

{

case ‘N’:
z = 25;

case ‘Y’:
x = 50;
break;

default:
x=0;
break;

}
print (x);

Cases without breaks fall
through to the next case

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt

CFG : Exceptions (try-catch)

try
{ s = br.readLine()
s = br.readLine();
if (s.iength() > 96) |IOExceptjon
throw new Exception
(“too long”);

if (s.length() == 0)

throw new Exception

(“too short”);
} (catch IOException e) {
e.printStackTrace();
} (catch Exception e) {
e.getMessage();

}

return (s); s.getMessage

return (s)

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt

Example Control Flow

public static void computeStats (int [] numbers)

{

int length = numbers.length;
double med, var, sd, mean, sum, varsum:;

sum = 0;
for (inti = 0; i < length; i++) Draw the graph
{ .
sum += numbers [i]; and label the
edges.

med = numbers [length / 2];
mean = sum / (double) length;

varsum = 0;
for (inti = 0; i < length; i++)

{
}

var = varsum / (length - 1.0);
sd = Math.sqrt (var);

varsum = varsum + ((numbers [i]- mean) * (numbers [i] - mean));

System.out.printin ("length: " + length);
System.out.printin ("mean: " + mean);
System.out.printin ("median: "+ med);
System.out.printin ("variance: " + var);
System.out.printin ("standard deviation: " + sd);

}

Introduction to Soffware Testing, Edition 2 (Ch 7) © Ammann & Offutt

Control Flow Graph for Stats

public static void computeStats (int [] numbers)

int length = numbers.le

varsum =JJ/

Ior (inti = 0; i < length; i++)
{

h|
J

= varsum
sd = Math.sqrt (var);

System.out.printin ("length:
System.out.printin ("mean:
System.out.printin ("median:

System.out.printin ("variance:
System.out.printin ("

7‘

Introduction to Soffware Testing, Edition 2 (Ch 7) © Ammann & Offutt

Control Flow TRs and Test Paths—EC
|

Edge Coverage

Test Paths
[1,2,3,4,3,5,6,7,6,8]

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt

Control Flow TRs and Test Paths—EPC
Edge-Pair Coverage

TR Test Paths
Al1,2,3] i.[1,2,3,4,3,56,7,6,8]
B.[2,3,4] i.[1,2,3,56,8]
C.[2,3,5] ii.[1,2,3,4,3,4,3,5,6,7,
D.[3,4,3] 6,7,6,8]
E.[3,56]

F[435] TRs toured sidetrips

G.[56,7]
H.[5,6,8] ,
.[6,7,6] i = AJDEFG,LLK CH
).[7,6.8]

K. [4,3.4] TP iii makesTP i
L.[7,6,7] redundant. A minimal
set of TPs is cheaper.

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt

Control Flow TRs and Test Paths—PPC

Prime Path Coverage

TR Test Paths
A.[3,4,3] i.[1,2,3,4,3,5,6,7,6,8]
B.[4,3,4] i.[1,2,3,4,3,4, 3,
C.[7,6,7] 5,6,7,6,7,6,8]
D.[7,6,8] ii.[1,2,3,4,3,5,6,8]
E.[6,7,6] iv.[1,2,3,5,6,7,6,8]

F[1,2,3,4] v. [1,2,3,5,6,8]

G.[4,3,56,7] —
H.[4,3,56,8] TP TRs toured sidetrips

.[1,2,3,56,7] 7_ATD,'ETF,'°_H,I,1
J[1,2,3,5,6,8 i A,B,C,D,E,FG, H)
//]/

TP ii makes iv D,E,F I J

i A,F H J

TP i redundant.

v)

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt

Data Flow Coverage for Source

» def: a location where a value is stored into memory
— x appears on the left side of an assignment (e.g., X = 44;)
— X is an actual parameter in a call site & method changes x’s value
— x is a method’s formal parameter (implicit def on method start)
— X IS an input to a program

» use : a location where variable’s value is accessed
— x appears on the right side of an assignment (e.g., y = sqrt(x);)
— X appears in a conditional test
— X is an actual parameter to a method
— X is an output of the program
— X is an output of a method in a return statement

» | A def and a use on the same node is only a DU-pair if the
def occurs after the use and the node is in a loop

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt

Example Data Flow — Stats

public static void computeStats (int [] numbers)

{

int length = numbers.length;
double med, var, sd, mean, sum, varsum:;

sum = 0.0;
for (inti=0; i < length; i++)
{

sum += numbers [i];

med = numbers [length/2];
mean = sum / (double) length;

varsum = 0.0;
for (inti=0; i < length; i++)

{
}

var = varsum / (length - 1);
sd = Math.sqrt (var);

varsum = varsum + ((numbers [i] - mean) * (humbers [i] - mean));

System.out.printin ("length: " + length);

(
System.out.printin ("mean: " + mean);
System.out.printin ("median: "+ med);

System.out.printin ("variance: " + var);
System.out.printin ("standard deviation: " + sd);

}

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt

Control FIow Graph for Stats

. (numbers)
sum =20
length = numbers.length

i=0 Annotate with the
statements ...

i >= length

i <length

med = numbers [length / 2]
mean = sum / (double) length
varsum =0

i=0

3upn += numbers [i]

i >= length
i <length
var = varsum / (length - 1.0)
sd = Math.sqrt (var)
varsum prlnt (length, mean, med, var, sd)

i++
Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt

CFG for Stalts — With Defs & Uses

def (1) = { numbers, sum, length }
use (1) = { numbers}

Turn the annotations into
def (2) = {i} def and use sets ...

use {3, 5) ={i, length }

def (5) = { med, mean, varsum, i }
use (5) = { numbers, length, sum }

use (4) =

def (8) = { var, sd }
use (8) = {'varsum, length, mean,

def (7) = { varsum, i } med, var, sd }

use (7) = { varsum, numbery

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt

Defs and Uses Tables for Stats

Node Def Use Edge Use

{ numbers, sum, | { numbers } (1,2)
length }

, 2.3)
{i} (3,4) { i, length }
(4,3)

3,5 i, | th
{ med, mean, { numbers, length, sum } (3,3) {i,length }
varsum, i } (5, 6)

(6,7) {i, length }

{ sum,i } { numbers, i, sum }

{ varsum, i } { varsum, numbers, i, (7, 6)

mean } (6,8) {i, length }
{ var, sd } { varsum, length, var, mean,
med, var, sd }

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt

Recall: DU Pairs and DU Paths

* def (n) or def (e) :The set of variables that are defined by node n or edge e
* use (n) or use (e) :The set of variables that are used by node n or edge e

* DU pair : A pair of locations (I,) s.t.a variable v is defined at |, and used at |

* Def-clear : Path from [, to I; is def-clear w.r.t. v if v is not given another value on
any of the nodes or edges in the path

* Reach :If there is a def-clear path from |, to | with respect to v, the def of v at |,
reaches the use at |,

« du-path : A subpath that is def-clear w.r.t. v from a def of v to a use of v
* Def-path set;du (n, v) — the set of du-paths that start at n,
* Def-pair set, du (n, n, v) — the set of du-paths from n; to n,

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

DU Pairs for Stats

: / : defs come before uses,
variable / DU Pairs | 4o not count as DU pairs

numbers | (1,4) (1,5) ()/7)
length | (I,5) (I,8)/(I ,(3,4) (1,(3,5) (1,(6,7)) (I, (6,8))

med (5.8 /

var (8, 8) /| defs after use in loop,
sd 8,8)) / these are valid DU pairs

mean WANER:

sum EI 4; EI 5; 4’4)\ 3 /'_ No def-clear path ...
’ ’ : ’ different scope for i

varsum | (5,7) (5, 8) é7, 7) g 8 |/

i (2,4) 2, (F4)) 2. (3.5)) G-P-rtorT)-Rri6r8))—

(4,4) (#(3,4)) (4, (3,3)) (A tHt6S)—

(2, 7Y (5, (6,7)) (5, (6,8)) \

((7,7))7,(6,7)) (7,(6,8)) No path through graph

from nodes 5 and 7 to 4 or 3

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt 31
g

DU Paths for Stats

variable

DU Pairs

DU Paths

variable

DU Pairs

DU Paths

numbers

(1,4)
(1,5)
(1,7)

,2,3,4]

mean

(3, 7)
(>, 8)

[5,6,7]
[5,6,8]

length

5)
(1,8)

(1, (34))
(1, (3.5)
(1, (6.7))
(1, (68))

varsum

(>, 7)
(>,8)
(7,7)
(7,8)

[5,67]
XX
RAXA
[7,68]

(>,8)

(8,8)

No path needed

(8,8)

No path needed

(1,4)
(1,5)
(4,4)
(4,5)

[1,2,3,4]
[1,2,3,5]
[4,3,4]
[4,3,5]

)
2. (34))
2. (3.5)
(4,4)

(4, (3:4))
(4, (3.5)
(5.7)

(5. (6.7))
(5. (6.8))
(7.7)

(7. (6.7))
(7, (68)

[2,3,4]
[2,3,4]
[2,3,5]
[4,3,4]
[4,3,4]
[4,3,5]
XXA
XXA
XX
[7,6,7]
[7,6,7]
[7,68]

Introduction to Software Testing, Edition 2 (Ch 7)

© Ammann & Offutt

DU Paths for Stats—No Duplicates

There are 38 DU paths for Stats, but only |12 unique

[4,3,4]
' 4,3,5]
EXXA
[5,6,8]
7,6,7]
7,6,8]

%| 4 expect a loop not to be “entered”

+ 6 require at least one iteration of a loop

‘I 2 require at least two iterations of a loop

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt

Test Inputs and Test Paths

Test input: numbers = [44] ; length = |
Test Path:[1,2,3,4,3,5,6,7,6,8]
Additional DU Paths covered (no sidetrips)

[1,2,3,4] [2,3,4] [4,3,5] [56,7] [7,6,8]
The five stars ﬁhat require at least one iteration of a loop

Test Input : numbers = [2, 10, 15] ; length = 3

Test Path:[1,2,3,4,3,4,3,4,3,5,6,7,6,7,6,7,6,8]
DU Paths covered (no sidetrips)

[4,3,4] [7,6,7]

The two stars {} that require at least two iterations of a loop

Other DU paths % require arrays with length 0 to skip loops
But the method fails with index out of bqupds exception...
med = numbers [length / 2]; A fault 'was

found

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt

Summary

« Applying the graph test criteria to control flow graphs is
relatively straightforward

— Most of the developmental research work was done with CFGs

« A few subtle decisions must be made to translate control
structures into the graph

« Some tools will assign each statement to a unique node
— These slides and the book uses basic blocks

— Coverage is the same, although the bookkeeping will differ

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt

 Logic coverage

« Some announcements
— Sprint 0.2 was due at 9:30am today

— Talk to me if you are in a distant time zone
— HW?2 has been released on CMS, due 2/29 at 9:30am

— HW?2 is to be done individually, no discussion on Ed

Introduction to Software Testing, Edition 2 (Ch 7) © Ammann & Offutt

