
CS 5154
Flaky Tests

Guest Lecture by 

August Shi, Assistant Prof. at UT Austin

Spring 2021



Development Cycle

2

Developers Servers

Make Changes
Build code

Run tests

test0

test1

test2

testn

…

test0

testn

test1

test2

test1

test2
Merge Changes

PassFail

Debug Changes



…

?

testn

Developers Servers

Make Changes
Build code

Run tests

test0

test1

test2

test0

testn

test1

test2

test1

test2

Fail

Debug Changes

Are Tests Reliable?

3

Tests are Flaky

Flaky Test: a test that can non-deterministically pass or fail 
when run on the same version of the code

Is there a bug in 
my change?

Do I debug?

Can I just ignore 
this failure?



Flaky Tests Fundamentally 
Break Regression Testing!

4



…

?

testn

Developers Servers

Make Changes
Build code

Run tests

test0

test1

test2

test0

testn

test1

test2

test1

test2

Fail

Debug Changes

Tests are Flaky

Regression Testing Challenges (2)

5



An Empirical Analysis of Flaky Tests
Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, Darko Marinov

Slides adapted from those by Farah Hariri
6



Flaky Tests: Why do we care?

• Flaky tests undermine the value of the test suite
• Flaky failures are hard to be reproduced due to non-determinism

• Flaky failures are hard to debug especially when not affected by recent 
modifications

• Flaky failures may hide real bug

• Commonality of flaky tests in large code bases
• Example: TAP system at Google has 1.6M test failures in the last 15 months, 

out of which 73K (4.56%) are failures causes by flaky tests

7



Flaky Tests: Why do we care?

• Current solutions are unsatisfactory
• Most common solution is rerunning the failed test multiple times, if it passes 

once we declare it passing

• Google for example reruns flaky tests for 10 times
• Android annotation @FlakyTest and JUnit annotation @Repeat used to mark 

tests for rerunning multiple times before declaring its failure

8



This Study

• First empirical study on flaky tests within open-source projects

• Goals
• Characterize the root causes of flaky tests

• Study the possible ways of manifesting flaky failures

• Identify the common fixing strategies and provide actionable information for 
avoiding, detecting, and fixing flaky tests

9



Methodology

• Extract the entire SVN repository of Apache Software Foundation
• Focus on commits likely to have fixed flaky tests

=> larger dataset of fixed cases than from bug-report databases

• Grep for the keywords “flak” and “intermit”
• 1129 commits

• Manual inspection of commits
• Filtering phase: Is the commit actually about a flaky test? Distinct flaky test?

=> 855 commits about flaky tests, 486 about fixing distinct flaky tests

• Analysis phase: What are the reasons for flaky tests?
=> Inspected 201 commits

10



Analysis Findings

• 10 main root causes of flakiness
Root Cause # Commits % Commits
Async Wait 74 46%
Concurrency 32 20%
Test-Order Dependency 19 12%
Resource Leak 11 7%
Network 10 6%
Time 5 3%
I/O 4 2%
Randomness 4 2%
Floating-Point Operations 3 2%
Unordered Collections 1 1%
Unknown 40 n/a 11



Async Wait

• The largest category – 46%

• Def: Test makes an asynchronous call and does not properly wait for 
the result of the call to become available before using it

• Example:
@Test
public void testRsReportsWrongServerName() throws Exception {
MiniHBaseCluster cluster = TEST_UTIL.getHBaseCluster();
MiniHBaseClusterRegionServer firstServer =
(MiniHBaseClusterRegionServer)cluster.getRegionServer(0);

HServerInfo hsi = firstServer.getServerInfo();
firstServer.setHServerInfo(...);
// Sleep while the region server pings back
Thread.sleep(2000);
assertTrue(firstServer.isOnline());
... // similarly for secondServer

}
12



Async Wait - Manifestation

• Manifestation Strategies:
• 34% of Async Wait flaky tests use sleep or waitFor with time delay

=> manifestation can be as simple as changing the time delay value

• 85% of Async Wait flaky tests do not “wait” on external resources and involve 
only one ordering (wait on only one other thread/process)

• Implication: Most Async Wait tests can be detected by adding one
time delay

13



Async Wait - Fixing

• Common Fixes:
• Change to use waitFor calls (58%)

• Modify sleep call parameters (26%)

• Reordering code (3%)

• Other (14%)

• Example:

@Test(timeout=180000)
public void testRsReportsWrongServerName() throws Exception {
MiniHBaseCluster cluster = TEST_UTIL.getHBaseCluster();
MiniHBaseClusterRegionServer firstServer =
(MiniHBaseClusterRegionServer)cluster.getRegionServer(0);

HServerInfo hsi = firstServer.getServerInfo();
firstServer.setHServerInfo(...);
// Sleep while the region server pings back
cluster.waitOnRegionServer(0);
assertTrue(firstServer.isOnline());
... // similarly for secondServer

}
14



Async Wait - Fixing

• Effectiveness:
• waitFor: Most effective; explicitly states the necessary condition before proceeding

More efficient when the result is available earlier

• sleep: Inefficient, counterintuitive (hard to infer desired ordering)
No guarantees (overestimation is inefficient and underestimation leads to failure)

• Reordering code: similar to sleep except a bit more efficient

• Implication:
• For developers: Explicitly express dependencies using waitFor to synchronize code

• For researchers: Techniques could automatically insert order enforcing methods such 
as waitFor to fix the code

15



Concurrency

• The second largest category – 20%

• Def: Test non-determinism is due to undesirable interactions between 
different threads (not asynchronous calls)
• E.g., data races, atomicity violations, deadlocks

• Note: Non-determinism can be in the code under test or in the test code itself

• Example: if (conf != newConf) {
for (Map.Entry<String, String> entry : conf) {
if ((entry.getKey().matches("hcat.*")) &&

(newConf.get(entry.getKey()) == null)) {
newConf.set(entry.getKey(), entry.getValue());

}
}
conf = newConf;

} 16



Concurrency - Manifestation

• Manifestation Strategies:
• Almost all flaky tests involve only two threads or their failures can be 

simplified to only two threads

• 97% of their failures due to concurrent accesses only on in-memory objects

• Implication: Existing techniques of increasing context switch 
portability could help in the manifestation of most concurrency flaky 
tests

17



Concurrency - Fixing

• Common Fixes:
• Adding locks (31%)

• Making code determinisitic (25%)

• Changing concurrency guard conditions (9%)

• Changing assertions (9%)

• Other (26%)

• Example:

if (conf != newConf) {
for (Map.Entry<String, String> entry : conf) {
synchronized (this) {
if ((entry.getKey().matches("hcat.*")) &&

(newConf.get(entry.getKey()) == null)) {
newConf.set(entry.getKey(), entry.getValue());

}
}

}
conf = newConf;

}
18



Concurrency

• Effectiveness: As long as the root cause is correctly identified and 
addressed, all the fixes completely remove the flakiness

• Implication: No common strategy – developers have to carefully 
inspect the root cause and address it

19



Test-Order Dependency

• The third largest category – 12%

• Def: Test outcome depends on the order in which the tests are run
• In principle, all tests should be independent of one another; in practice 

however, it is not the case

• Example: @BeforeClass
public static void beforeClass() throws Exception {
bench = new TestDFSIO();
...
cluster = new MiniDFSCluster.Builder(...).build();
FileSystem fs = cluster.getFileSystem();
bench.createControlFile(fs, ...);

}
public void testWrite() {...} /* Writes data needed for other tests*/

20



Test-Order Dependency - Manifestation

• Manifestation Strategies:
• 16% due to static field in test

• 32% due to static field in code under test

• 52% due to external dependency

• Almost half of test order dependency cases depend on external resources, 
while the other half depends on the internal state

• Implications:
• We need techniques that record and compare internal memory states

• We need sophisticated techniques that model the external environment and 
explicitly rerun in different orders for some cases

21



Test-Order Dependency - Fixing

• Common Fixes:
• Setting up/cleaning up states (74%)

• Removing dependency (16%)

• Making local copies of shared variables merging tests (10%)

• Example: @BeforeClass
public static void beforeClass() throws Exception {
bench = new TestDFSIO();
...
cluster = new MiniDFSCluster.Builder(...).build();
FileSystem fs = cluster.getFileSystem();
bench.createControlFile(fs, ...);
/* Check write here, as it is required for other tests */
testWrite();

}
22



Test-Order Dependency - Fixing

• Effectiveness:
• All of them completely remove the flakiness

• Third one (copying code) is rather a workaround and not a fix

• Implications:
• For developers: Identify and clean shared state before and after test runs

• For researchers: Automated techniques can record the shared state before 
and after the execution to automatically generate setup/clean up methods 
and fix flaky tests due to test-order dependency

23



Other Cases

• Resource leak: Application does not manage resources properly
• E.g., memory allocations, database connections
• Fixes: Resource pool

• Network: Test fails due to network uncertainties
• E.g., remote connection failure, bad local socket management
• Fixes: Use mocks, waitFor

• Time: Test depends on system time
• E.g., fail when midnight passes, differences in time reporting across platforms
• Fixes: Don’t rely on time…

• I/O: I/O operation failures lead to test failures
• E.g., not closing files, file not set up
• Fixes: Close resources, synchronization

24



Other Cases Cont’d

• Randomness: Depending on random numbers
• E.g., using random number generator

• Fixes: Control seed, handle boundary conditions

• Floating-point operations: Nondeterminism due to computations
• E.g., overflows/underflows, non-associative addition, platform differences

• Fixes: make test assertions independent from floating-point results

• Unordered collections: Assuming deterministic ordering of collection
• E.g., iterating over HashSet, using JSON

• Fixes: Program to specification, not implementation

25



Fixing: Why not remove flaky tests?

• While most of the cases (74%) of flaky tests are fixed by modifying the 
test, 24% of the fixes modify the code, out of which 94% are fixes to 
bugs in the code

• Therefore, flaky tests should not be simply removed or disabled 
because they can help uncover bugs in the code under test

26



Conclusions

• Regression testing is important but can be greatly undermined by the 
presence of flaky tests

• Conducted study of a large number of fixes to flaky tests to 
understand the common root causes, and describe common 
strategies that developers use to fix and reproduce flaky tests

• Our analysis provides some hope for combating flaky tests: while 
there is no silver bullet solution that can address all categories of 
flaky tests, there are broad enough categories for which it should be 
feasible to develop automated solutions to manifest, debug, and fix 
flaky tests

27



Discussion

• Should flaky tests even be run when considering changes to merge 
into a repository?

• Why do developers make these mistakes and what measures can we 
implement to prevent writing flaky tests?

• Could we get a more precise data-set if we use NLP techniques to 
analyze the commit messages or bug reports to determine if a bug is 
actually a flaky tests?

• Is it always wrong to use sleep calls instead of waitFor calls? In 
which cases would sleep be a better option than waitFor?

• When a test fails, how should we categorize it? Is it flaky? What kind 
of flaky test?

28


