
CS 5154: Software Testing

Automated Test Generation

Instructor: Owolabi Legunsen

Fall 2021

Review of the six CS5154 themes

1. How to automate the execution of tests? 

2. How to design and write high-quality tests? 

3. How to measure the quality of tests? 

4. How to automate the generation of tests?

5. How to reduce the costs of running existing tests?

6. How to deal with bugs that tests reveal? [??]

2

Why care about automated test generation?

• You learned how to design and write high-quality tests

• Hypothetical task: test a project with 80k lines of code in one week

• Test suites can have more lines than code under test, e.g., hw0, hw1, hw2

How would you proceed?
3

Commons-Math

84,377 lines of source code

86,924 lines of unit-test code

On automated test suite generation

• Today: fundamental concepts, alternative approaches

• Next: hands-on demo

4

Testing: review of basic testing concepts
• Test case:

• Test oracle:

• Test suite:

• Test adequacy:

5

Testing: basic concepts
• Test case (or, test): executes the code under test and includes

• Input values
• execution steps (most times)
• Expected outputs

• Test oracle: compares observed and expected outputs

• Test suite: a finite set of tests
• Usually, can be run together in sequence

• Test adequacy: a measurement of test quality
• e.g., code coverage

6

Different approaches target these concepts

• Input value generation, e.g., fuzzing, symbolic execution

• Test suite generation, e.g., Randoop, EvoSuite

• Test oracle generation is very hard

• Test Adequacy: used to evaluate automated tests

7

Who is using automated test generation

• Randoop:

8

Who is using automated test generation? (2)

• Type in your favorite search engine:
• “fuzzing at Google”
• “fuzzing at Microsoft”
• “fuzzing at Facebook”
• “fuzzing at X”

9

Classes of test generation approaches

10

• Functional vs. structural test generation

• Functional test generation is based on the functionality of the code

• Structural test generation is based on the structure of the code

Input OutputSoftware SoftwareInput Output

Structural generation granularity
• Projects providing public APIs for external use

• Method-level test generation: consider various method invocation sequences to
expose possible faults

• Projects usually used as a whole
• Path-level generation: consider all the execution paths to cover most code elements

11

Guided unit test generation (this lecture and the next)

Whole-suite test generation (not covered this semester)

Thought experiment

• How would you go about automatically creating a test suite for class C?

• Alternatively, what are the pieces that you need to create a test suite for C?
12

public class HashSet extends Set{
public boolean add(Object o){…}
public boolean remove(Object o){…}
public boolean isEmpty(){…}
public boolean equals(Object o){…}
...

}

Your thoughts

13

Execution steps

Test oracle

Input values

Recall: the components of a unit test

14

Program under test:
public class Math{

static int sum(int a, int b){
return a+b;

}
…

}

Example JUnit test:
public class MathTest{

@Test
public void testSum (){

int a=1;
int b=1;
int c=Math.sum(a, b);
assertEquals(2,c);

}
…

}

How to do random structural test generation?

• Needed: generate a random sequence of
invocations, each of which has

• A random method
• Some random parameters
• A random receiver object

• Not required for static methods

15

public class HashSet extends Set{
public boolean add(Object o){…}
public boolean remove(Object o){…}
public boolean isEmpty(){…}
public boolean equals(Object o){…}
...

}

Program under test
Set s = new HashSet();
s.add(“hi”);

Set s = new HashSet();
s.add(“hi”);
s.remove(null);

Set s = new HashSet();
s.isEmpty();
s.remove(“no”);
s.isEmpty();
s.add(“no”);
s.isEmpty();
s.isEmpty();
...

Generated test t1

Generated test t2

Generated test t3

Generation

…

Your turn…

• What are some limitations of random method-sequence generation?

16

Random method-sequence generation:
limitations
• Does not have test oracles

• E.g., an ideal test oracle for the test below: assertEquals(1, s.size())
• Harder to generate complex tests

• E.g., the parameters of some method invocations can only be
generated by other method invocations

• Can have many redundant or illegal tests

17

Set s = new HashSet();
s.isEmpty();
s.remove(“no”);
s.isEmpty();
s.add(“no”);
s.isEmpty();
s.isEmpty();

A random test

CS 5154: Software Testing

Automated Test Generation

Instructor: Owolabi Legunsen

Fall 2021

Random method-sequence generation:
redundant and illegal tests

19

1. Useful test:
Set s = new HashSet();
s.add(“hi”);

2. Useful test:
Date d = new Date(2006, 2, 14);

3. Redundant test:
Set s = new HashSet();
s.add(“hi”);

4. Illegal test:
Date d = new Date(2006, 2, 14);
d.setMonth(-1); // pre: argument >= 0

5. Illegal test:
Date d = new Date(2006, 2, 14);
d.setMonth(-1); // pre: argument >= 0
d.setDay(5);

Should not output

Should not even generate

Should not output

We need something more than random

• Randoop: Feedback-directed Random Test Generation (ICSE’07)
• The intuitions
• The tool
• Read the paper for more details!

20

Randoop: feedback-directed random test
generation
• Use code contracts as test oracles

• Build tests incrementally
• new tests extend previous ones
• in this context, a test is a method sequence

• As soon as a test is created, use its execution results to guide generation
• away from redundant or illegal method sequences
• towards sequences that create new object states

21

Randoop: inputs and output
• Inputs: Classes under test, time limit, set of contracts

• Method contracts (e.g. “o.hashCode() throws no exception”)
• Object invariants (e.g. “o.equals(o) == true”)
• User-written contracts

• Output: contract-violating or contract-preserving unit tests

22

HashMap h = new HashMap();
Collection c = h.values();
Object[] a = c.toArray();
LinkedList l = new LinkedList();
l.addFirst(a);
TreeSet t = new TreeSet(l);
Set u = Collections.unmodifiableSet(t);
assertTrue(u.equals(u));

fails on Sun’s JDK
1.5/1.6 when
executed

Some contracts that Randoop uses

• o.equals(o)==true
• o.equals(o) throws no exception
• o.hashCode() throws no exception
• o.toString() throws no exception
• No null inputs and No NPEs

23

Randoop: algorithm
1. Seed value pool for various types

• pool = { 0, 1, true, false, “hi”, null ... }
2. Do until time limit expires:

a. Create a new sequence
i. Randomly pick a method call m(T1...Tk)/Tret
ii. For each input parameter of type Ti, randomly pick a sequence Si

from the value pool that constructs an object vi of type Ti
iii. Create new sequence Snew = S1; ... ; Sk ; Tret vnew = m(v1...vk);
iv. If Snew was previously created (lexically), go to step i

b. Classify new sequence Snew : discard, output, or add to pool

24

Randoop: example
Program under test:
public class A{

public A() {...}
public B m1(A a1) {...}

}
public class B{

public B(int i) {...}
public void m2(B b, A a) {...}

}

Test1:
B b1=new B(0);

Value pool:

{0, 1, null, “hi”, …}

S1: B b1=new B(0);

Method
Parameter
Receiver object

25

Randoop: example

26

Program under test:
public class A{

public A() {...}
public B m1(A a1) {...}

}
public class B{

public B(int i) {...}
public void m2(B b, A a) {...}

}

Test1:
B b1=new B(0);

Test2:
A a1=new A();

Value pool:

{0, 1, null, “hi”, …}

S1: B b1=new B(0);

S2: A a1=new A();

Method
Parameter
Receiver object

Randoop: example

27

Program under test:
public class A{

public A() {...}
public B m1(A a1) {...}

}
public class B{

public B(int i) {...}
public void m2(B b, A a) {...}

}

Test1:
B b1=new B(0);

Test2:
A a1=new A();

Test3:
A a1=new A(); //reused from s2
B b2=a1.m1(a1);

Value pool:

{0, 1, null, “hi”, …}

S1: B b1=new B(0);

S2: A a1=new A();

S3: A a1=new A();
B b2=a1.m1(a1);

Method
Parameter
Receiver object

Randoop: example

28

Program under test:
public class A{

public A() {...}
public B m1(A a1) {...}

}
public class B{

public B(int i) {...}
public void m2(B b, A a) {...}

}

Test1:
B b1=new B(0);

Test2:
A a1=new A();

Test3:
A a1=new A();
B b2=a1.m1(a1);

Test4:
B b1=new B(0); //reused from s1
A a1=new A(); //reused from s3
B b2=a1.m1(a1); //reused from s3
b1.m2(b2, a1);

…

Value pool:

{0, 1, null, “hi”, …}

S1: B b1=new B(0);

S2: A a1=new A();

S3: A a1=new A();
B b2=a1.m1(a1);

S4: …

Method
Parameter
Receiver object

Classifying a sequence

29

Execute and
check contracts

Value pool

Contract
violated?

Contract
violating tests

Sequence
redundant?

Minimize
sequence

Discard
sequence

Yes

No

Yes

No

Start

Redundant sequences

1. During generation, maintain a set of all objects created

2. A sequence is redundant if all the objects created during its
execution are members of the set in 1 (using equals to compare)

• One can also use more sophisticated state equivalence methods to
compare, e.g., heap canonicalization

30

Randoop outputs oracles
• Oracle for contract-violating tests:

• Oracle for normal-behavior tests (regression tests):

31

Object o = new Object();
LinkedList l = new LinkedList();
l.addFirst(o);
TreeSet t = new TreeSet(l);
Set u = Collections.unmodifiableSet(t);
assertTrue(u.equals(u));// assertion fails

Object o = new Object();
LinkedList l = new LinkedList();
l.addFirst(o);
l.add(o);
assertEquals(2, l.size());//expected to pass
assertEquals(false,l.isEmpty());//expected to pass

Find current bugs

Find future bugs

Tool support

• Input:
• An assembly (for .NET) or a list of classes (for Java)
• Generation time limit
• Optional: a set of contracts to augment default contracts

• Output: a test suite (JUnit or Nunit) containing
• Contract-violating test cases
• Normal-behavior test cases

32

Tool demo

33

