
CS 5154: Software Testing

Syntax-Based Coverage
and Mutation Testing

Instructor: Owolabi Legunsen

Fall 2021

Input
Domains Graphs Logic

Expressions
Syntax

A: {0, 1, >1}
B: {600, 700, 800}
C: {cs, ece, is, sds}

(!x | !y) & a & b
if (x > y)

z = x - y;
else

z = 2 * x;
2

Recall the four software models in this course

  

Conversation with a student after ISP HW

Student: I feel like I followed everything that you taught
us, but I still don’t know if I am doing it right…

Owolabi: How do you mean?

Student: Well, I don’t know if the tests that I wrote are
good enough and I don’t know when to stop!

Owolabi:
3

Question for you…

• You have followed all the MDTD criteria that we taught you

• You have written test that satisfy “strong” coverage criteria

• But, how good are those tests for finding faults?

4

CS5154 is organized into six themes

1. How to automate the execution of tests?

2. How to design and write high-quality tests?

3. How to measure the quality of tests?

4. How to automate the generation of tests?

5. How to reduce the costs of running existing tests?

6. How to deal with bugs that tests reveal?

5

What do we do in mutation testing?

Make small syntactic changes to source
code and see if a test suite is strong

enough to detect them

6

Benefits of mutation testing

• Mutation testing provides a way to evaluate the quality of test suites

• Mutation testing also helps discover tests that should be added

• Mutation testing can also help to discover faults in programs

7

Why learn about mutation testing?

• The “P” in the RIPR model
• Check whether errors are propagating to the state that test oracles check

• There is a lot of tool support for mutation testing

• Mutation testing is gaining adoption in industry and in open source

8

Companies are using mutation testing

9
• Articles should be available for FREE @ Cornell Library
• Do NOT pay to read these articles

How we will learn mutation testing

• Today: see mutation testing in action

• Next: discuss mutation testing in more detail

10

Demo on mutation testing

11

Getting Started

12

Basic Concepts

13

Mutation Operators (or mutators)

14

What we covered in the demo

• GitLab pages setup for Jacoco and PIT
• Parsing the PIT Maven output
• Parsing the PIT reports
• Killed Mutants and Surviving Mutants
• Equivalent Mutants
• Benefits of mutation testing: strengthening test suites and finding faults
• Mutation Operators
• Saving costs by using groups with fewer mutators
• Higher-order mutants

15

I want to read more about these concepts

• See “notes” links for mutation testing dates on the course webpage

• Those “notes” contain the relevant PIT web pages that we discussed in
the demo

• Focus on the relevant parts, but you can learn a lot by reading them all
• 40 pages, but lots of space in there

16

Killing Mutants

• Testers can keep adding tests until all mutants are killed

• Or, the process of killing mutants can help developers to find faults

17

Given a mutant m M for a program P and a test t, t is said to kill m if
and only if the output of t on P is different from the output of t on m.

Some types of mutants

• Dead mutant : A test case has killed it

• Stillborn mutant : Syntactically illegal

• Trivial mutant : Almost every test can kill it

• Equivalent mutant : No test can kill it (same behavior as original)

• Higher-order mutant : differs from original in more than one location

18

Mutation operators

• Rules for making small syntactic changes to the original program

• Mutation testing: can the tests can detect those changes?

• Well-designed mutation operators yield very powerful tests

• Operators are designed for different prog. languages and goals

19

One syntax-based coverage criteria

20

Mutation Coverage (MC) : For each m M, TR contains exactly one
requirement, to kill m.

Mutation testing and the RIPR model

21

• Reachability : Tests cause faulty (i.e., mutated) statements to be reached

• Infection : Tests cause faulty statement to result in an incorrect state

• Propagation : The incorrect state propagates to incorrect output

• Revealability : The oracles must observe part of the incorrect output

RIPR model yields two variants of mutation
coverage

22

Variant 1: Strongly Killing Mutants

Given a mutant m M for a program P and a test t, t is said to strongly kill
m if and only if the output of t on P is different from the output of t on m

23

Variant 2: Weakly Killing Mutants

Given a mutant m M that modifies a location l in a program P, and a test
t, t is said to weakly kill m if and only if the state of the execution of P on t
is different from the state of the execution of m on t immediately after l

24

Weakly killing satisfies reachability and infection, but not propagation

Strong vs. Weak Mutant Killing

25

1 boolean isEven (int X){
2 if (X < 0)
3 X = 0 - X;
∆3 X = 0;
4 if (double) (X/2) == ((double) X) / 2.0
5 return (true);
6 else
7 return (false);
8 }

Reachability : X < 0

Infection : X != 0

(X = -6) will kill mutant ∆3 under
weak mutation

Propagation : ((double) ((0-X)/2) == ((double) 0-X) / 2.0)

!= ((double) (0/2) == ((double) 0) / 2.0)

That is, X is not even …

Thus (X = -6) does not kill the mutant under strong mutation

Exercise: More on Weak mutant killing

26

int Min (int A, int B) {
int minVal;
minVal = A;

∆1 minVal = B;
if (B < A){

minVal = B;
}
return (minVal);

} // end Min

1. Find a test input that weakly kills
the mutant, but not strongly

2. Generalize : What predicate must
be true to weakly kill the mutant,
but not strongly?

3. Write down the conditions
needed to (i) reach the mutated
statement, (ii) infect the program
state, and (iii) propagate to the
output

More on Weak Mutation (contd)

27

2. Generalize : What predicate must be true to weakly kill the mutant,
but not strongly?

Reachability : true // we always reach

Infection : A ≠ B // minVal has a different value

Propagation : (B < A) = false // Take a different branch

1. Find a test that weakly kills the mutant, but not strongly

3. RIP conditions

A = 5, B = 3

B < A // minVal is set to B for both

Why does mutation testing work?

• This is not an absolute! (note the “usually”)

• The mutants guide the tester to an effective set of tests

• Of course, this depends on the mutation operators …

28

Fundamental Premise of Mutation Testing

If the software contains a fault, there will usually be a set of mutants
that can only be killed by a test case that also detects that fault

Some notes on mutation operators

• At the method level, mutation operators for different programming
languages are similar

• Mutation operators do one of two things :
• Mimic typical programmer mistakes (incorrect variable name)
• Encourage common test heuristics (cause expressions to be 0)

29

Exercise: Mutation Testing and Subsumption

• Mutation subsumes other (ISP, graph-based, and logic-based) criteria
by including specific mutation operators

• See pages 251 to 255 in the textbook

30

What we saw so far

• Mutation is widely considered the strongest test criterion

• And most expensive !

• By far the most test requirements (each mutant)

• Usually, yields the most tests

31

Next

32

1. How to automate the execution of tests?

2. How to design and write high-quality tests?

3. How to measure the quality of tests?

4. How to automate the generation of tests?

5. How to reduce the costs of running existing tests?

6. How to deal with bugs that tests reveal?

