CS 5154: Software Testing

Syntax-Based Coverage
and Mutation Testing

Instructor: Owolabi Legunsen

Fall 2021

Recall the four software models in this course

v vy

Domains Expressions

A:{0, 1, >1}
B: {600, 700, 800} Q?D

C: {cs, ece, is, sds}

Conversation with a student after ISP HW

Student: | feel like | followed everything that you taught
us, but | still don’t know if | am doing it right...

Owolabi: How do you mean?

Student: Well, | don’t know if the tests that | wrote are
good enough and | don’t know when to stop!

Owolabi: ®

Question for you...

* You have followed all the MDTD criteria that we taught you

* You have written test that satisfy “strong” coverage criteria

* But, how good are those tests for finding faults?

CS5154 is organized into six themes

~/

2. How to design and write high-quality tests? \/

3. How to measure the quality of tests?

What do we do in mutation testing?

Make small syntactic changes to source
code and see if a test suite is strong
enough to detect them

Benefits of mutation testing

* Mutation testing provides a way to evaluate the quality of test suites

* Mutation testing also helps discover tests that should be added

* Mutation testing can also help to discover faults in programs

Why |learn about mutation testing?

* The “P” in the RIPR model
* Check whether errors are propagating to the state that test oracles check

* There is a lot of tool support for mutation testing

e Mutation testing is gaining adoption in industry and in open source

Companies are using mutation testing

2018 ACM/IEEE 40th International Conference on Software Engineering: Software Engineering in Practice

State of Mutation Testing at Google

Goran Petrovié¢ Marko Ivankovié
Google Inc. Google Inc.
goranpetrovic@google.com markoi@google.com

An Industrial Application of Mutation Testing:
Lessons, Challenges, and Research Directions

Goran Petrovi¢ Marko Ivankovic Bob Kurtz | René Just
Google Switzerland GmbH George Maso University of Massachusetts
Zurich, Switzerland Fairfax, VA, USA Amberst, MA, USA
{ goranpetrovic, markoi } @ google.com {rkurtz2., pammann } @ gmu.edu rjust@cs.umass.edu

* Articles should be available for FREE @ Cornell Library
* Do NOT pay to read these articles

How we will learn mutation testing

* Today: see mutation testing in action

* Next: discuss mutation testing in more detail

Demo on mutation testing

C' @& pitestorg ' @ * 0 » °

pitest.org

Real world mutation testing

PIT is a state of the art mutation testing system, providing gold
standard test coverage for Java and the jvm. It's fast, scalable ano
integrates with modern test and build tooling.

=

Getting Started

Pitest

Quickstart

Out of the box PIT can be launched from the command line, ant or maven. Third party components
provide integration with Gradle, Eclipse, IntelliJ and others (see the links section for details).

The impatient can jump straight to the section for their chosen build tool -

it may however be helpful to
read the basic concepts section first.

Getting started NQ ;"\w& (Ao + 9(:\ v\f

Maven quick start (
NN
Command line quick start

Basic Concepty RQM\ -RJ» wl\e\z ff?z

* © * 0 % @

C & pitest.org/quickstart/basic_concepts/

Pitest

Basic Concepts

Mutation Operators

PIT applies a configurable set of mutation operators (or mutators) to the byte code generated by compiling your code.

For example the CONDITIONALS_BOUNDARY_MUTATOR would modify the byte code generated by the statement

if (1i»>=0) {
return "foo";
} else {
return "bar";

T

To be equivalent to

if (i>8) {
return "foo";
} else {
return "bar":

Mutation Operators (or mutators)

/ Eggﬁﬁ@ﬁ@(

& & pitestorg/quickstart/mutators/

Available mutators anc

The following table list available mutators and whether or not they are part of a group :

“OLD_DEFAULTS"” “DEFAULTS’ “STRONGER" “ALL"
Mutators group group group group
Conditionals Boundary yes yes yes yes
Increments yes yes yes yes

Invert Negatives g5

Wi atk defubk ™

What we covered in the demo

* GitLab pages setup for Jacoco and PIT

* Parsing the PIT Maven output

* Parsing the PIT reports

* Killed Mutants and Surviving Mutants

* Equivalent Mutants

* Benefits of mutation testing: strengthening test suites and finding faults
* Mutation Operators

* Saving costs by using groups with fewer mutators

* Higher-order mutants

| want to read more about these concepts

* See “notes” links for mutation testing dates on the course webpage

* Those “notes” contain the relevant PIT web pages that we discussed in
the demo

* Focus on the relevant parts, but you can learn a lot by reading them all
* 40 pages, but lots of space in there

Killing Mutants

Given a mutant m € M for a program P and a test t, t is said to kill m if

and only if the output of t on P is different from the output of t on m.

* Testers can keep adding tests until all mutants are killed

* Or, the process of killing mutants can help developers to find faults

17

Some types of mutants

Dead mutant : A test case has killed it

Stillborn mutant : Syntactically illegal

* Trivial mutant : Almost every test can kill it

Equivalent mutant : No test can kill it (same behavior as original)

Higher-order mutant : differs from original in more than one location

18

Mutation operators

* Rules for making small syntactic changes to the original program
* Mutation testing: can the tests can detect those changes?
* Well-designed mutation operators yield very powerful tests

* Operators are designed for different prog. languages and goals

One syntax-based coverage criteria

Mutation Coverage (MC) : For each m € M, TR contains exactly one

requirement, to kill m.

20

Mutation testing and the RIPR model

Reachability : Tests cause faulty (i.e., mutated) statements to be reached
Infection : Tests cause faulty statement to result in an incorrect state
Propagation : The incorrect state propagates to incorrect output

Revealability : The oracles must observe part of the incorrect output

21

RIPR model yields two variants of mutation
coverage

Variant 1: Strongly Killing Mutants

Given a mutant m € M for a program P and a test t, t is said to strongly kill

m if and only if the output of t on P is different from the output of t on m

23

Variant 2: Weakly Killing Mutants

Given a mutant m € M that modifies a location [in a program P, and a test

t, tis said to weakly kill m if and only if the state of the execution of Pon t
is different from the state of the execution of m on t immediately after /

Weakly killing satisfies reachability and infection, but not propagation

24

Strong vs. Weak Mutant Killing

1 boolean isEven (int X){ Reachability : X< 0
2 if (X < 9)
3 X =0 - X; Infection : X 1=0

- . A =9 (X =-6) will kill mutant A3 under
4 if (double) (X/2) == ((double) [N ECEANSEEUIIIm

5 return (true):

6 else Propagation : ((double) ((0-X)/2) == ((double) 0-X) / 2.0)

7 odilg il = ((double) (0/2) == ((double) 0) / 2.0)

8 } That is, X is not even ...

Thus (X = -6) does not kill the mutant under strong mutation

Exercise: More on Weak mutant killing

int Min (int A, int B) {
int minVal;
minVal = A;
Al minVal = B;
if (B < A){
minVal = B;
}
return (minval);
} // end Min

1.

2.

Find a test input that weakly kills
the mutant, but not strongly
Generalize : What predicate must
be true to weakly kill the mutant,
but not strongly?

. Write down the conditions

needed to (i) reach the mutated
statement, (ii) infect the program
state, and (iii) propagate to the
output

26

More on Weak Mutation (contd)

1. Find a test that weakly kills the mutant, but not strongly
A=5B=3

2. Generalize : What predicate must be true to weakly kill the mutant,
but not strongly?

B<A// minVal is set to B for both

3. RIP conditions

Reachability : true // we always reach

Infection : A # B // minVal has a different value
Propagation : (B < A) = false // Take a different branch .

Why does mutation testing work?

Fundamental Premise of Mutation Testing

If the software contains a fault, there will usually be a set of mutants
that can only be killed by a test case that also detects that fault

* This is not an absolute! (note the “usually”)
* The mutants guide the tester to an effective set of tests

* Of course, this depends on the mutation operators ...

28

Some notes on mutation operators

* At the method level, mutation operators for different programming
languages are similar

e Mutation operators do one of two things :
* Mimic typical programmer mistakes (incorrect variable name)
* Encourage common test heuristics (cause expressions to be 0)

29

Exercise: Mutation Testing and Subsumption

e Mutation subsumes other (ISP, graph-based, and logic-based) criteria
by including specific mutation operators

* See pages 251 to 255 in the textbook

What we saw so far

* Mutation is widely considered the strongest test criterion
* And most expensive |
By far the most test requirements (each mutant)

e Usually, yields the most tests

31

Next

4. How to automate the generation of tests?

5. How to reduce the costs of running existing tests?

