CS 5154: Software Testing

Applying Logic Coverage
to Source Code

Instructor: Owolabi Legunsen

Fall 2021

Recall the four software models in this course

Input Logic
: h .
Domains Graphs Expressions

A:{0, 1, >1}
B: {600, 700, 800} Q?D

C: {cs, ece, is, sds}

Steps in Logic-based MDTD

* Develop a model of the software as a set of predicates v/
* That’s it!
e But how?

* Require tests to satisfy some combination of clauses v/
* We learned some criteria and their strengths/weaknesses

Predicates: logic expressions in source code

* Predicates are derived from decision statements
* if, while, for, switch, do-while

* In programs, most predicates have less than four clauses
* In fact, most have just one clause

» With one clause, CoC, ACC, and CC collapse to predicate coverage (PC)
* ACC is only useful with three or more clauses

Finding values for variables in predicates

public int checkVal(int x) {
y = X*2;
if (x>0)
if ((x>10 && x<20) || y==50) ¢
return 1;
else |
if ((x<-10 8&& x>-208) || y<-60) 7
return 2;

Some things to consider when finding values

* Reachability : tests must reach the predicate

e Controllability : tests must cause the (clauses in a) predicate to have
the truth assignment that we want

e Internal variables : reachability and controllability require reasoning
about variables that are not inputs

Finding values for variables in predicates (2)

—_

if ((x<-10 && x>-20) || y<-60)

1. public int checkVal(int x) {

2. y = X*2;

3. if (x>0) =

4. if ((x>10 && x<20) || y==50)
5. return 1;

6. else

/.

3. return 2;

9. }

the predicate on line 47

X

25

What internal variables do
we need to think about?

y

What values of x do we
need to reach the
predicate on line 47

X >0

Control: what values of x will satisfy the truth assignmen@

L,
Another issue: beware of code transformations

With one clause, CoC, ACC, and CC collapse to
predicate coverage (PC). So, why not just
transform all predicates to have only one clause?

Why not just d

if ((a & b) || <)

S1;
} else

S2;

I ——
Transformation 1

Problems with Transformation 1

1. We trade one problem for two problems :
* Maintenance becomes harder

e Reachability can be harder to compute

if (a) {
if (b)

else {
if (c)
i
e
S2;

} else {

else
S2;

10

More problems with Transformation 1

R

(anb)ve CACC PC,
T X

2. Consider coverage :
e CACCon original code requires four rows
e PContransformed code requires five rows

 Testing transformed code is more costly!

 Tests that satisfy PC on transformed code
do not satisfy CACC on the original code

T 7N = - M M - - O

d
T
T
T
T
F
F
F
F

o
T
F
T
F
T
F
T
=

11

Okay, but maybe | can just do this?

d = ;
i f &8 t j?>‘3 =d || ¢
e s
St e

’ Transformation 2

} else S1;
{ } else
} S2; {

S2;

12

Problems with Transformation 2
&d = a && b;

e . e=d|]| c;
1. We move the complexity into computations : if (e)
* Logic criteria are not effective at testing computations {
S1;
} else
{
S2;

¥

More problems with Transformation 2

2. Consider coverage :
(anb)ve CACC PC;

e CACCon original code requires four rows T X

 PContransformed code requires two rows

 PCon transformed code is equivalent to
clause coverage (CC) on original code

 CCis not effective for testing

MM M = = M M - o T

d
T
T
T
T
F
F
F
F

C
T
F
T
F
T
=
T
F

The moral of the transformation story

Don’t

* Logic criteria exist to help us design better software

* Circumventing logic criteria via program transformations is unsafe

One last issue: side effects in predicates

AN l/
|| A) | Bis:changeVar (A)

N A&& (B

—

* Runtime system chec the@, if B is false, check A again
e But now A has a different value!
e How to write a test that has two different values for A?

* There are no clear answers to this controllability problem!

We suggest a social solution : ask your team!

16

Summary: Logic Coverage and Source Code

* Predicates come from decision expressions (while, if, do-while), etc

* To find values for testing, reachability, controllability, and internal
variables must be considered

e Using program transformations to sidestep logic criteria is a bad idea

Next

* Practicing logic coverage concepts on the next homework

* Syntax-based testing

