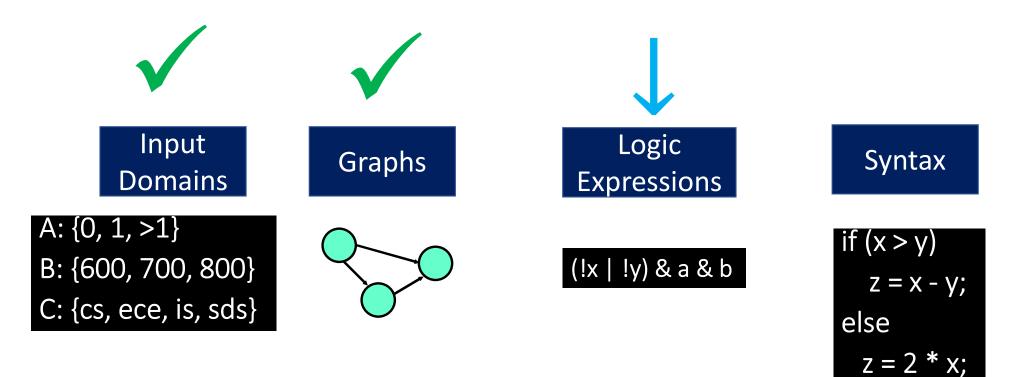
CS 5154: Software Testing Testing with Determination

Instructor: Owolabi Legunsen

Fall 2021

Recall the four software models in this course



We need criteria that are not as costly as CoC

• The general idea is quite simple:

Test each clause independently from the other clauses

- But, getting the details right is hard
 - e.g., what exactly does "independently" mean ?
- The book presents this idea as "making clauses active" ...

Active Clauses

- A weakness of Clause Coverage: values do not always make a difference
- Values ((5 < 10) ∨ true) ∧ (1 >= 1*1) for ((a < b) ∨ D) ∧ (m >= n*o)
 Only the last clause counts!

• To really test the results of a clause, the clause should be the determining factor in what the predicate evaluates to

Determination

A clause c_i in predicate p, called the *major clause*, <u>determines</u> p if and only if the values of the remaining *minor clause* c_i are such that changing c_i changes the value of p

• Making c_i determine p is said to make the clause active

CS 5154: Software Testing

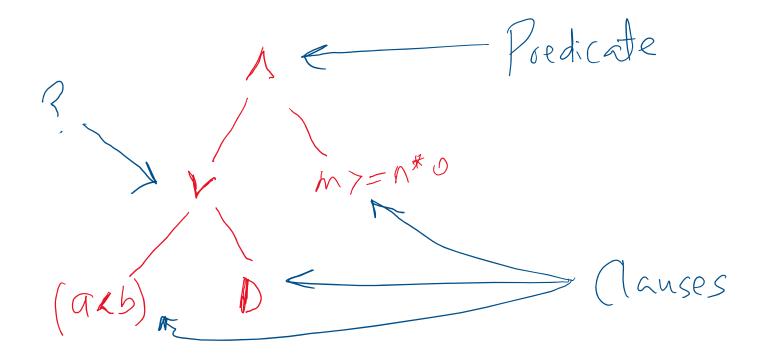
Testing with Determination (Active Clause Criteria)

Instructor: Owolabi Legunsen

Fall 2021

Recall: predicates and clauses

 $((a < b) \lor D) \land (m \ge n*o)$



7

Why do we care about clause coverage?

```
int stringFactor(String i, int n) {
    if (i != null || n !=0)
        return i.length()/n;
    else
        return -1;
}
// Tests: ("happy", 2), (null, 0)
```

Determination

A clause c_i in predicate p, called the *major clause*, <u>determines</u> p if and only if the values of the remaining *minor clauses* c_j are such that changing c_i changes the value of p

- Making c_i determine p is said to make the clause active
- Condition under which *c_i* determines *p*

A GE Colci I assignment (C) sit. p (ci=true) = p (ci=folse) Where assignment (cj) is cj=fore or cj=folse

The essence of testing with determination

- 1. Pick one clause in predicate p to be the major clause c_i
- 2. Find conditions under which c_i determines p
- 3. Find a test that makes c_i true and a test that makes c_i false
- 4. Repeat steps 1 to 3 for all other clauses in p
- 5. Eliminate redundant tests

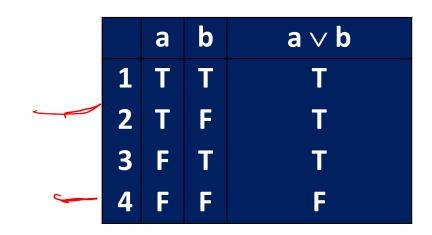
Examples: determining predicates

$\underline{\mathbf{P}} = \mathbf{A} \lor \mathbf{B}$

if *B* = *true*, *p* is always true.

so if *B* = *false*, *A* determines *p*.

if *A* = *false*, *B* determines *p*.



$\underline{\mathbf{P}=\mathbf{A}\wedge\mathbf{B}}$

if *B* = *false*, *p* is always false.

so if *B* = *true*, *A* determines *p*.

if *A* = *true*, *B* determines *p*.

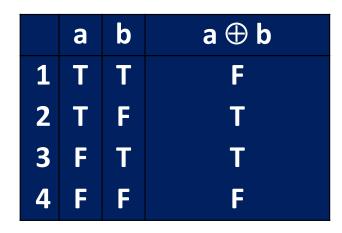
More examples: determining predicates

$\underline{\mathbf{P}=\mathbf{A}\oplus\mathbf{B}}$

if *B* = *true*, *A* determines *p*.

if *B* = *false*, *A* determines *p*.

so, A determines p for any B.



$\underline{\mathsf{P}} = \mathsf{A} \leftrightarrow \mathbf{B}$

if *B* = *true*, *A* determines *p*.

if *B* = *false*, *A* determines *p*.

so, A determines p for any B.

	а	b	a ↔ b
	Т		Т
	Т		F
3	F	Т	F
	F	F	Т

12

Testing with determination \bigcirc

- Goal : Find tests for each clause when that clause determines the value of the predicate
- This goal is formalized in a family of criteria that have subtle, but very important, differences

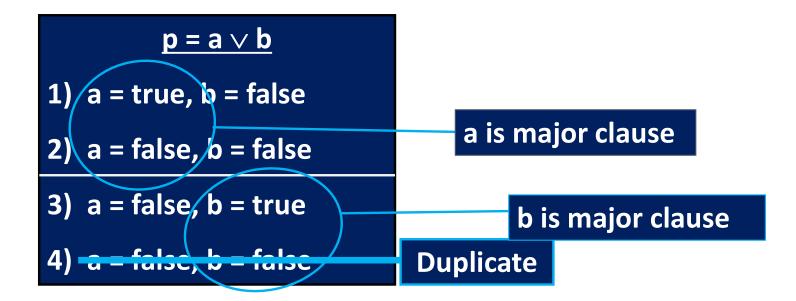
Active Clause Coverage

Step 1: For each p in P and each major clause c_i in Cp, choose minor clauses c_i, j != i, so that c_i determines p.

<u>Active Clause Coverage (ACC)</u> : TR has two requirements for each $c_i : c_i$ evaluates to true and c_i evaluates to false.

- ACC is a form of Multiple Condition Decision Coverage (MCDC)
- MCDC is required by the FAA for safety-critical software

Example on Active Clause Coverage



A formulaic way of determining predicates

- Finding values for minor clauses c_i is easy for simple predicates
- How to find values for more complicated predicates?
- We need some "formula" that is easy to apply

A definitional way: when does *c* determine *p*?

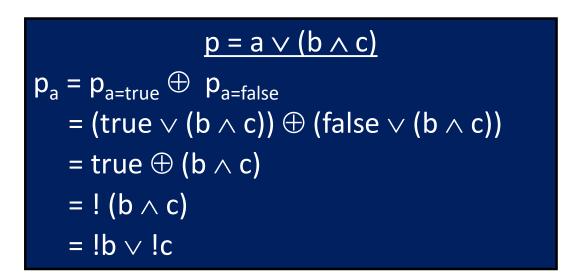
- Let *p_{c=true}* be predicate *p* with every occurrence of *c* replaced by *true*
- Let *p_{c=false}* be predicate *p* with every occurrence of *c* replaced by *false*
- To find values for the minor clauses, connect $p_{c=true}$ and $p_{c=false}$ with XOR

 $p_c = p_{c=true} \oplus p_{c=false}$

• After solving, *p_c* describes exactly the values needed for *c* to determine *p*

An example using the definitional way

• Let $p = a \lor (b \land c)$. What values of b and c will cause a to determine p?



• " $lb \vee lc$ " means a determines p when either b or c is false

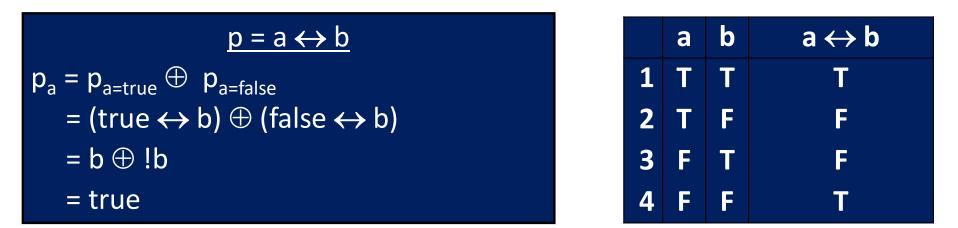
Exercise 1: using the definitional way

• Let $p = a \lor b$. What values of b will cause a to determine p?

- "!b" means a determines p when b is false
- We obtained the same result from reasoning about the truth table

Exercise 2: using the definitional way

• Let $p = a \leftrightarrow b$. What values of b will cause a to determine p?



- "true" means that a always determines p
- We obtained the same result from reasoning about the truth table

Is there a problem with Active Clause Coverage?

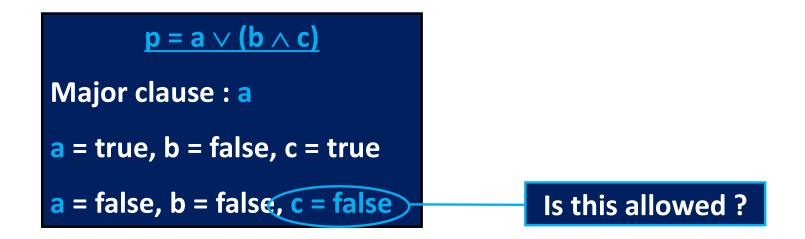
Step 1: For each p in P and each major clause c_i in Cp, choose minor clauses c_i, j != i, so that c_i determines p.

<u>Active Clause Coverage (ACC)</u> : TR has two requirements for each $c_i : c_j$ evaluates to true and c_j evaluates to false.

• Ambiguity : Must minor clauses have the same values when the major clause is true and when the major clause is false?

Illustrating the ambiguity in ACC

• Recall: a determines p when "*lb* \vee *lc*", i.e., when either b or c is false



Three options for resolving ACC ambiguity

• Minor clauses do not need to be the same

• Minor clauses do need to be the same

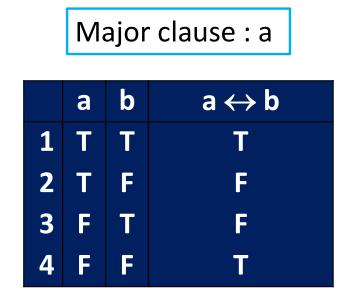
• Minor clauses force the predicate to become both true and false

Option 1: minor clauses don't need to be the same

- Step 1: For each p in P and each major clause c_i in Cp, choose minor clauses c_i, j != i, so that c_i determines p.
- Step 2 (ACC): TR has two requirements for each c_i: c_i evaluates to true and c_i evaluates to false.

<u>General Active Clause Coverage (GACC)</u> : The values chosen for the minor clauses c_j do <u>not</u> need to be the same when c_i is true as when c_i is false, that is, $c_j(c_i = true) = c_j(c_i = false)$ for all c_j OR $c_j(c_i = true) != c_j(c_i = false)$ for all c_j .

Problem: GACC doesn't subsume Predicate Coverage



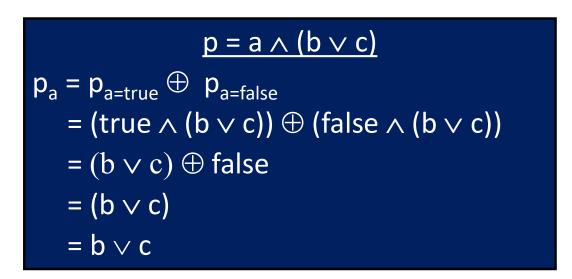
Option 2: minor clauses do need to be the same

- Step 1: For each p in P and each major clause c_i in Cp, choose minor clauses c_i, j != i, so that c_i determines p.
- Step 2 (ACC): TR has two requirements for each c_i: c_i evaluates to true and c_i evaluates to false.

<u>Restricted Active Clause Coverage (RACC)</u> : The values chosen for the minor clauses $c_j \text{ must be the same}$ when c_i is true as when c_i is false, that is, it is required that $c_j(c_i = true) = c_j(c_i = false)$ for all c_j .

Exercise 3: using the definitional way

• Let $p = a \land (b \lor c)$. What values of b and c will cause a to determine p?



• "b v c" means a determines p when either b or c is true

Example on Restricted Active Clause Coverage

Major clause : a, $P_a = \mathbf{b} \lor \mathbf{c}$

	а	b	С	a ∧ (b ∨ c)
1	Т	T	T	Т
2	Т	T	F	т
3	Т	F	T	т
4	т	F	F	F
5	F	T	T	F
6	F	T	F	F
7	F	F	T	F
8	F	F	F	F

RACC ($c_i = a$) can only be satisfied by row pairs (1, 5), (2, 6), or (3, 7)

Only three pairs can be used

Notes on RACC

• Does RACC subsume predicate and clause coverage?

• RACC was a common interpretation by developers for FAA

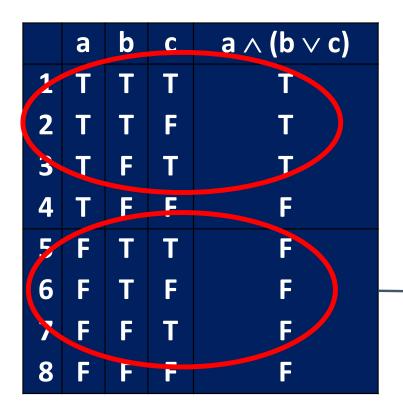
• Problem: RACC often leads to infeasible test requirements

Option 3: minor clauses must determine *p*

- Step 1: For each p in P and each major clause c_i in Cp, choose minor clauses c_i, j != i, so that c_i determines p.
- Step 2 (ACC): TR has two requirements for each c_i: c_i evaluates to true and c_i evaluates to false.

<u>Correlated Active Clause Coverage (CACC)</u> : The values chosen for the minor clauses c_j must <u>cause p to be</u> true for one value of the major clause c_i and false for the other, that is, it is required that $p(c_i = true)$!= $p(c_i = false)$.

Example on CACC



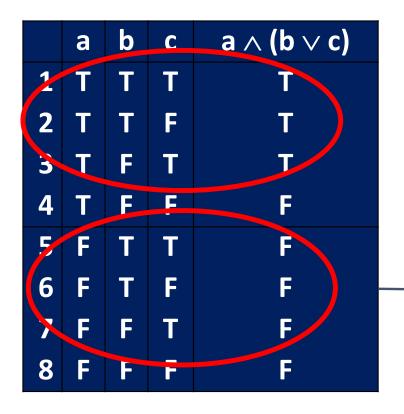
a determines $P \rightarrow (b=true \text{ or } c = true)$

CACC ($c_i = a$) can be satisfied by choosing any of rows 1, 2, 3 AND any of rows 5, 6, 7 – a total of nine pairs

Notes on CACC

- CACC implicitly allows minor clauses to have different values
- CACC explicitly subsumes predicate coverage
- Does CACC subsume clause coverage?

Does CACC subsume clause coverage?



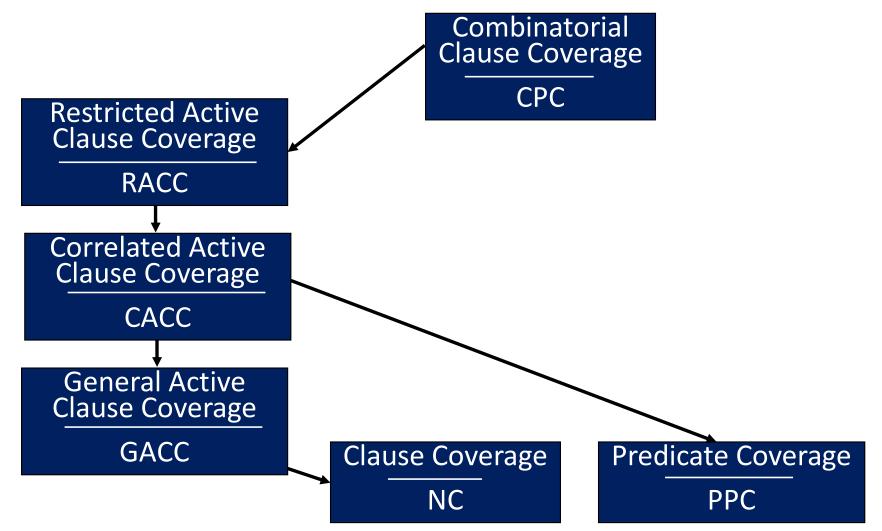
a determines $P \rightarrow (b=true \text{ or } c = true)$

CACC ($c_i = a$) can be satisfied by choosing any of rows 1, 2, 3 AND any of rows 5, 6, 7 – a total of nine pairs

Infeasibility

- Consider the predicate: $(a > b \land b > c) \lor c > a$
- Infeasible: (a > b) = true, (b > c) = true, (c > a) = true is infeasible
- As with other criteria, infeasible test requirements must be recognized and dealt with
- Recognizing infeasible test requirements is hard, and in general, undecidable

Subsumption among Logic coverage criteria



An end-to-end example with RACC

b & Al Fin For Likewise, for clause *c*, only one pair, diffe ca cause TFT and TFF, cause *c* to determine the determine use v value of *p*

	a	b	С	a ∧ (b ∨ c)	Pa	p _b	Pc	
I	Т	Т	Т	Т	0			In sum, three
2	Т	Т	F	т	\bigcirc	0		separate pairs of rows can cause <i>a</i>
3	Т	F	Т	т			0	to determine the
4	Т	F	F	F		0	0	value of <i>p</i> , and
5	F	Т	Т	F	0			only one pair each for <i>b</i> and <i>c</i>
6	F	Т	F	F	0			
7	F	F	Т	F	0			
8	F	F	F	F				

How many tests does RACC yield, compared to Combinatorial Clause Coverage?

A more subtle exercise on determination

p = (a ∧ b) ∨ (a ∧ !b)

$$p_{a} = p_{a=true} \oplus p_{a=false}$$

$$= ((true \land b) \lor (true \land !b)) \oplus ((false \land b) \lor (false \land !b))$$

$$= (b \lor !b) \oplus false$$

$$= true \oplus false$$

$$= true$$

р

$$p_{b} = p_{b=true} \oplus p_{b=false}$$

$$= ((a \land true) \lor (a \land \neg true)) \oplus ((a \land false) \lor (a \land \neg false))$$

$$= (a \lor false) \oplus (false \lor a)$$

$$= a \oplus a$$

$$= false$$

A more subtle exercise on determination (2)

p = (a ∧ b) ∨ (a ∧ !b)

- *a* always determines the value of this predicate
- **b** never determines the value **b** is irrelevant !
- So, why would anyone write a predicate like this?

A more subtle exercise on determination (2)

 $p = (a \land b) \lor (a \land !b)$

Logic Coverage Summary

- Predicates are often very simple—in practice, most have <3 clauses
 - In fact, most predicates only have one clause !
- Only clause? PC is enough
- 2 or 3 clauses? CoC is practical
- Advantages of ACC criteria can be significant for large (no. of) predicates
- CoC is impractical for predicates with many clauses

Next

• Applying Logic Coverage to source code