CS 5154: Software Testing

Testing with Determination

Instructor: Owolabi Legunsen

Fall 2021

Recall the four software models in this course

We need criteria that are not as costly as CoC

The general idea is quite simple:

Test each clause independently from the other clauses

- But, getting the details right is hard
 - e.g., what exactly does "independently" mean?
- The book presents this idea as "making clauses active" ...

Active Clauses

• A weakness of Clause Coverage: values do not always make a difference

- $Values((5 < 10) \lor true) \land (1 >= 1*1)$ for $((a < b) \lor D) \land (m >= n*o)$
 - Only the last clause counts!
- To really test the results of a clause, the clause should be the determining factor in what the predicate evaluates to

Determination

A clause c_i in predicate p, called the *major clause*, <u>determines</u> p if and only if the values of the remaining *minor clauses* c_i are such that changing c_i changes the value of p

• Making c_i determine p is said to make the clause active

2

CS 5154: Software Testing

Testing with Determination (Active Clause Criteria)

Instructor: Owolabi Legunsen

Fall 2021

Recall: predicates and clauses

Why do we care about clause coverage?

```
int stringFactor(String i, int n) {
  if (i != null || n !=0) ~
   return i.length()/n;
  return -1;
// Tests: ("happy", 2), (null, 0)
```

Determination

A clause c_i in predicate p, called the major clause, determines p if and only if the values of the remaining minor clauses c_i are such that changing c_i changes the value of p

- Making c_i determine p is said to make the clause active
- Condition under which c_i determines p

The essence of testing with determination

- 1. Pick one clause in predicate p to be the major clause c_i
- 2. Find conditions under which c_i determines p
- 3. Find a test that makes c_i true and a test that makes c_i false
- 4. Repeat steps 1 to 3 for all other clauses in p
- 5. Eliminate redundant tests

Examples: determining predicates

$P = A \vee B$

if B = true, p is always true.

so if B = false, A determines p.

if A = false, B determines p.

		а	b	a∨b
		T		T
—	2	T ((E)	T
	3	(E)(E)	Т	T
	4	E	F	F

$P = A \wedge B$

if B = false, p is always false.

so if B = true, A determines p.

if *A = true*, *B* determines *p*.

	a	b	a∧b
1	–	(]	T
2	T	F	F
3	F		F
4	H	F	F

More examples: determining predicates

$P = A \oplus B$

if B = true, A determines p.

if B = false, A determines p.

so, A determines p for any B.

$P = A \leftrightarrow B$

if B = true, A determines p.

if B = false, A determines p.

so, A determines p for any B.

	а	b	$a \leftrightarrow b$
	-		_
2		F	F
3) 1		F
4(F	F	T

Testing with determination ©

- Goal: Find tests for each clause when that clause determines the value of the predicate
- This goal is formalized in a family of criteria that have subtle, but very important, differences

Active Clause Coverage

• Step 1: For each p in P and each major clause c_i in Cp, choose minor clauses c_i , j != i, so that c_i determines p.

Active Clause Coverage (ACC): TR has two requirements for each c_i : c_i evaluates to true and c_i evaluates to false.

- ACC is a form of Multiple Condition Decision Coverage (MCDC)
- MCDC is required by the FAA for safety-critical software

Example on Active Clause Coverage

A formulaic way of determining predicates

- Finding values for minor clauses c_i is easy for simple predicates
- How to find values for more complicated predicates?
- We need some "formula" that is easy to apply

A definitional way: when does c determine p?

- Let $p_{c=true}$ be predicate p with every occurrence of c replaced by true
- Let $p_{c=false}$ be predicate p with every occurrence of c replaced by false
- To find values for the minor clauses, connect $p_{c=true}$ and $p_{c=false}$ with XOR

$$p_c = p_{c=true} \oplus p_{c=false}$$

• After solving, p_c describes exactly the values needed for c to determine p

An example using the definitional way

• Let $p = a \vee (b \wedge c)$. What values of b and c will cause a to determine p?

```
p = a \lor (b \land c)
p_{a} = p_{a=true} \oplus p_{a=false}
= (true \lor (b \land c)) \oplus (false \lor (b \land c))
= true \oplus (b \land c)
= ! (b \land c)
= !b \lor !c
```

 $9 \sqrt{(b \wedge C) \wedge 9}$

• "!b \times !c" means a determines p when either b or c is false

Exercise 1: using the definitional way

• Let $p = a \lor b$. What values of b will cause a to determine p?

```
p = a \lor b
p_a = p_{a=true} \oplus p_{a=false}
= (true \lor b) \oplus (false \lor b)
= true \oplus b
= !b
```

	a	b	a∨b
	T		Т
2	T	F	Т
3	F	T	Т
4	F	F	F

- "!b" means a determines p when b is false
- We obtained the same result from reasoning about the truth table

Exercise 2: using the definitional way

• Let $p = a \leftrightarrow b$. What values of b will cause a to determine p?

```
p = a \leftrightarrow b
p_{a} = p_{a=true} \oplus p_{a=false}
= (true \leftrightarrow b) \oplus (false \leftrightarrow b)
= b \oplus !b
= true
```

	a	b	$a \leftrightarrow b$
	T	T	Т
	T	F	F
3	F	Т	F
4	F	F	T

- "true" means that a always determines p
- We obtained the same result from reasoning about the truth table

Is there a problem with Active Clause Coverage?

• Step 1: For each p in P and each major clause c_i in Cp, choose minor clauses c_i , j != i, so that c_i determines p.

Active Clause Coverage (ACC): TR has two requirements for each c_i : c_j evaluates to true and c_i evaluates to false.

 Ambiguity: Must minor clauses have the same values when the major clause is true and when the major clause is false?

21

Illustrating the ambiguity in ACC

• Recall: a determines p when " $!b \lor !c$ ", i.e., when either b or c is false

```
p = a v (b v c)

Major clause : a
a = true, b = false, c = true
a = false, b = false, c = false
```

Is this allowed?

Three options for resolving ACC ambiguity

Minor clauses do not need to be the same

• Minor clauses must be the same

Minor clauses allow the predicate to become both true and false

Option 1: minor clauses don't need to be the same

- Step 1: For each p in P and each major clause c_i in C_p , choose minor clauses c_i , j != i, so that c_i determines p.
- Step 2 (ACC): TR has two requirements for each c_i : c_i evaluates to true and c_i evaluates to false.

General Active Clause Coverage (GACC): The values chosen for the minor clauses c_j do <u>not</u> need to be the same when c_i is true as when c_i is false, that is, $c_i(c_i = true) = c_i(c_i = false)$ for all c_j OR $c_i(c_i = true) = c_i(c_i = false)$ for all c_i .

Problem: GACC doesn't subsume Predicate Coverage

Major clause : a

Option 2: minor clauses do need to be the same

- Step 1: For each p in P and each major clause c_i in C_p , choose minor clauses c_i , j != i, so that c_i determines p.
- Step 2 (ACC): TR has two requirements for each c_i : c_j evaluates to true and c_i evaluates to false.

Restricted Active Clause Coverage (RACC): The values chosen for the minor clauses c_j must be the same when c_i is true as when c_i is false, that is, it is required that $c_i(c_i = true) = c_i(c_i = false)$ for all c_i .

Exercise 3: using the definitional way

• Let $p = a \land (b \lor c)$. What values of b and c will cause a to determine p?

```
p = a \wedge (b \vee c)
p_{a} = p_{a=true} \oplus p_{a=false}
= (true \wedge (b \vee c)) \oplus (false \wedge (b \vee c))
= (b \vee c) \oplus false
= (b \vee c)
= b \vee c
```

• " $b \lor c$ " means a determines p when either b or c is true

Example on Restricted Active Clause Coverage

Major clause : a, $P_a = \mathbf{b} \vee \mathbf{c}$

RACC ($c_i = a$) can only be satisfied by row pairs (1, 5), (2, 6), or (3, 7)

Only three pairs can be used

Notes on RACC

• Does RACC subsume predicate and clause coverage?

RACC was a common interpretation by developers for FAA

• Problem: RACC often leads to infeasible test requirements

Option 3: minor clauses allow predicate to be true and false

- Step 1: For each p in P and each major clause c_i in Cp, choose minor clauses c_i , j != i, so that c_i determines p.
- Step 2 (ACC): TR has two requirements for each c_i : c_i evaluates to true and c_i evaluates to false.

Correlated Active Clause Coverage (CACC): The values chosen for the minor clauses c_i must cause p to be true for one value of the major clause c_i and false for the other, that is, it is required that $p(c_i = true)$!= $p(c_i = false)$.

Example on CACC

a determines P when (b=true or c = true)

CACC ($c_i = a$) can be satisfied by choosing any of rows 1, 2, 3 AND any of rows 5, 6, 7 – a total of nine pairs

Notes on CACC

- CACC implicitly allows minor clauses to have different values
- CACC explicitly subsumes predicate coverage
- Does CACC subsume clause coverage?

Does CACC subsume clause coverage?

a determines P when (b=true or c = true)

CACC ($c_i = a$) can be satisfied by choosing any of rows 1, 2, 3 AND any of rows 5, 6, 7 – a total of nine pairs

Infeasibility

- Consider the predicate: $(a > b \land b > c) \lor c > a$
- Infeasible: (a > b) = true, (b > c) = true, (c > a) = true is infeasible
- As with other criteria, infeasible test requirements must be recognized and dealt with
- Recognizing infeasible test requirements is hard, and in general, undecidable

Subsumption among Logic coverage criteria

2)3,4,6

An end-to-end example with RACC

In sum, three separate pairs of rows can cause a to determine the value of p, and only one pair each for b and c

How many tests does RACC yield, compared to Combinatorial Clause Coverage?


```
p = (a \land b) \lor (a \land !b)
p_a = p_{a=true} \oplus p_{a=false}
= ((true \land b) \lor (true \land !b)) \oplus ((false \land b) \lor (false \land !b))
= (b \lor !b) \oplus false
= true \oplus false
= true
```

```
p = (a \land b) \lor (a \land \neg b)
p_b = p_{b=true} \oplus p_{b=false}
= ((a \land true) \lor (a \land \neg true)) \oplus ((a \land false) \lor (a \land \neg false))
= (a \lor false) \oplus (false \lor a)
= a \oplus a
= false
```

A more subtle exercise on determination (2)

$p = (a \wedge b) \vee (a \wedge !b)$

- always determines the value of this predicate
- b never determines the value b is irrelevant!
- So, why would anyone write a predicate like this?

Logic Coverage Summary

- Predicates are often very simple—in practice, most have <3 clauses
 - In fact, most predicates only have one clause!
- Only clause? PC is enough
- 2 or 3 clauses? CoC is practical
- Advantages of ACC criteria can be significant for large (no. of) predicates
 - CoC is impractical for predicates with many clauses

Next

• Applying Logic Coverage to source code