
CS 5154: Software Testing

Introduction to
Input Space Partitioning

Instructor: Owolabi Legunsen

Fall 2021



CS5154 is organized into six themes

1. How to automate the execution of tests?

2. How to design and write high-quality tests?

3. How to measure the quality of tests?

4. How to automate the generation of tests?

5. How to reduce the costs of running existing tests?

6. How to deal with bugs that tests reveal?



How many inputs can we test this method on?

/** Compute the arithmetic mean of A, B, and C.
*  Assume a 32-bit computer 
**/
private static double computeAverage (int A, int B, int C) {

…
}

Total no. of possible inputs = |values of A| x |values of B| x |values of C|
= 2^32 x 2^32 x 2^32
= 79.23 x 1027

80 Octillion 3



How many inputs should we test this method on?

/** Compute the arithmetic mean of A, B, and C.
*  Assume a 32-bit computer 
**/
private static double computeAverage (int A, int B, int C) {

…
}

4



Input 
Domains Graphs Logic 

Expressions
Syntax

A: {0, 1, >1}
B: {600, 700, 800}
C: {cs, ece, is, sds}

(not X or not Y) and A and B
if (x > y)

z = x - y;
else

z = 2 * x;
5

Let’s see how model-driven test design can help

Recall that we will look at four models in this course



ISP: choose inputs from the input domain

• You have been choosing inputs for programs all your career

• ISP helps you

• choose those inputs more systematically

• check that inputs come from different parts of the input domain

• know when to stop choosing

6



3 key concepts in ISP

1. Input Domain: the set of all possible inputs to a program

2. Input Parameters that a program takes
• e.g., method arguments, user inputs, file/database data, global variables
• parameters define the scope of the input domain

3. Input Domain Modeling: process of reasoning about the input domain

7



The core activities in Input Domain Modeling

1. Partition the input domain into regions called blocks

2. Choose at least one value for each block

3. Combine values across various parameters

Wait… that’s it?!

8



Partitioning the input domain into blocks

• Decide on characteristics of your input domain to partitioning on

• Assumption: values in each block are equally useful for testing

• Example: Program: void foo(String char) // “char” is a letter
Input domain:  Alphabetic letters
Partitioning characteristic: Case of letter

• Block 1: upper case
• Block 2: lower case

9



Your turn: examples on partitioning

• Program: void foo(String char) // “char” is a letter

• Input domain:  Alphabetic letters
• Partitioning characteristic: 

• Block 1:
• Block 2:
• Block 3:

10



Your turn: examples on partitioning (2)

• Program: void foo(String char) // “char” is a letter

• Input domain:  Alphabetic letters
• Partitioning characteristic: 

• Block 1:
• Block 2:
• Block 3:

11



Your turn: examples on partitioning (3)

• Program: void bar(List<String> l)
• Input domain:
• Partitioning characteristic: 

• Block 1:
• Block 2:
• Block 3:

12



Your turn: examples on partitioning (4)

• Program: void baz(List<String> filenames)
• Input domain: 
• Partitioning characteristic: 

• Block 1:
• Block 2:
• Block 3:

13



How to know that partitioning is “correct”?
• Let the input domain be D

• Characteristic q of D defines a set of blocks, Bq= {b1,b2,…,bQ}

• Each partition must satisfy two properties :
1. Blocks must be pairwise disjoint (no overlap)

2. Together the blocks must cover the domain D (complete)

bi ∩ bj = ,  i  j, bi, bj Bq

b = D
b  Bq

b1 b2

b3
14



Partitioning is simple but easy to do wrong

• Consider the characteristic “order of elements in list F”

b1 = sorted in ascending order
b2 = sorted in descending order
b3 = arbitrary order

but … something’s fishy …

What if the list is of length 0 or 1?

The list will be in all three blocks
That is, disjointness is not satisfied

Solution:
Two characteristics that each 
address just one property

C1: List F sorted ascending
- c1.b1 = true
- c1.b2 = false

C2: List F sorted descending
- c2.b1 = true
- c2.b2 = false

Design blocks for 
that characteristic

Can you find 
the problem?

Can you think of 
a solution?

15



Your turn: work with your neighbor in pairs

Make sure your partition is valid: (1) Pairwise disjoint, and (2) Complete

Design a partitioning for the input domain: all integers

That is, partition integers into blocks such that each 
block seems to be equivalent in terms of testing 

16



Discuss with a nearby pair 

• What characteristics did you all come up with?

• Are the blocks pairwise disjoint and complete?

• Work together to fix any problems that you find with the partitioning 

17



Characteristics, blocks, problems that you discussed?

18



Characteristics, blocks, problems that you discussed?

19



How to know that partitioning is “complete”?

• Partitioning is a creative step

• Spend some time brainstorming

• We will give some hints that may help

20



Questions so far?

21



Let’s reflect on what we learned

• Partitioning is a creative design activity
• many partitions can be created for the same input domain

• If done carelessly, partitions may not be complete or pairwise disjoint

• Consider different alternatives and the trade-offs that they induce

22



• Multiple partitioning schemes may exist for the same code

• Considering cost/benefit tradeoffs in designs is an essential part of SE

ISP is a design activity 

Image Credits: https://blogs.perficient.com/2011/07/22/how-to-build-a-tire-swing-a-case-for-agile-development/
23



Next..

24

(1) How is any of these systematic?

(2) Why did you say that ISP is a way to do 
Model-driven test design?


