
CS 5154: Software Testing

Coverage Criteria and
Input Space Partitioning

Instructor: Owolabi Legunsen

Fall 2021

The next step in ISP require coverage criteria

• Step 1: Identify testable functions in your program

• Step 2: Find all input parameters

• Step 3: Model the input domain

• Step 4: Use a criterion to choose combination of values

• Step 5: Refine combinations of blocks into test inputs

2

But what is a coverage criterion?

3

Example 1: statement coverage criterion

• What elements of software should tests exercise?

• What rule do we want to impose on those elements?

• How do we check if the rule is satisfied?

4

Example 2: branch coverage criterion

• What elements of software should tests exercise?

• What rule do we want to impose on those elements?

• How do we check if the rule is satisfied?

5

These questions point to general concepts

• What elements of software do should tests exercise?
• Test requirements

• What rule(s) do we want to impose on those elements?
• Coverage criteri{a,on}

• How do we measure the degree to which the rules are met?
• Coverage

6

Defining these three concepts generally
• Test Requirement : A software element that a test must satisfy or cover

• Coverage Criterion : A rule or collection of rules that impose test
requirements on a set of tests

• Coverage : Given a set of test requirements TR for coverage criterion C,
a test set T satisfies C coverage if and only if for every test requirement
tr in TR, there is at least one test t in T such that t satisfies tr

7

We saw these concepts in CS5154 (indexOf)

45

3

2

1

Graph: abstract version Edges
1 2
2 3
3 2
3 4
2 5
Initial Node: 1
Final Nodes: 4, 5

6 requirements
for Edge-Pair
Coverage
1. [1, 2, 3]
2. [1, 2, 5]
3. [2, 3, 4]
4. [2, 3, 2]
5. [3, 2, 3]
6. [3, 2, 5]

Test Paths
[1, 2, 5]
[1, 2, 3, 2, 5]
[1, 2, 3, 2, 3, 4]

8

Question after last class

• Program P has six if statements. How many test requirements does
the branch coverage criteria impose on tests for P?

 2 * 6

 2 ^ 6

9

Question for you

Why do we need these general and fairly abstract definitions?

10

Do we always want 100% coverage?

• Coverage Level : The ratio of the number of test requirements
satisfied by T to the size of TR

• What if
• we just started programming?
• 100% coverage is too expensive?
• we just want to get a sense of how we are doing?

• It makes sense to measure the degree of coverage

11

Is 100% coverage always possible?

• Coverage : Given a set of test requirements TR for coverage criterion C,
a test set T satisfies C coverage if and only if for every test requirement
tr in TR, there is at least one test t in T such that t satisfies tr

• What if some tr is impossible to satisfy?
• Example: dead code

• An infeasible test requirement is one that cannot be satisfied

12

How to handle infeasible test requirements?

• Drop infeasible tr from TR

• Replace infeasible tr with less stringent TR

• Thoughts?

13

Quiz: Who said it?

Four score and seven years ago our
fathers brought forth on this continent,
a new nation, conceived in Liberty, and

dedicated to the proposition that all
men are created equal.

14

Are all criteria born equal?
• These tests satisfy 100% statement coverage but miss a fault

int stringFactor(String i, int n) {
if (i != null || n !=0)
return i.length()/n;
else
return -1;

}
// Tests: (“happy”, 2), (null, 0)

• Trick question: Will tests that satisfy 100% branch coverage find the fault?

• Teaser: “stronger” criteria can help, e.g., Multiple Condition Decision Coverage
15

Subsumption: comparing criteria “strength”

• Criteria Subsumption : Test criterion C1 subsumes C2 if and only if
every set of test cases that satisfies C1 also satisfies C2

• Examples that we have seen in CS 5154:

• Branch coverage subsumes statement coverage

• Edge-Pair coverage subsumes edge coverage

16

Homework: Set relationships in subsumption

• Let C1 and C2 be two distinct coverage criteria whose sets of test
requirements are TR(C1) and TR(C2), respectively. If C1 subsumes C2,
which of the following is correct?

 TR(C1) is a superset of TR(C2)

 There is a many-to-one relation between TR(C1) and TR(C2)

 There is a one-to-many relation between TR(C1) and TR(C2)

17

Questions about coverage criteria

18

So, how can criteria help us with ISP?

• triang() characteristic: relation of each side to 0

• How should we consider multiple partitions at the same time?
• What combination of blocks should we choose values from?

Characteristic b1 b2 b3 b4

q1 greater than 1 equal to 1 equal to 0 less than 0

q2 greater than 1 equal to 1 equal to 0 less than 0

q3 greater than 1 equal to 1 equal to 0 less than 0

19

Idea 1: choose all combinations

• All Combinations Coverage (ACoC) Criterion: All combinations of
blocks from all characteristics must be used.

• The number of resulting tests is the product of the number of blocks
in each characteristic :

 i

20

ACoC for triang()
Characteristic b1 b2 b3 b4

q1 greater than 1 equal to 1 equal to 0 less than 0

q2 greater than 1 equal to 1 equal to 0 less than 0

q3 greater than 1 equal to 1 equal to 0 less than 0

Characteristic b1 b2 b3 b4

q1 2 1 0 -1
q2 2 1 0 -1
q3 2 1 0 -1

• Owolabi relabeled the blocks using same values in corresponding
blocks for each characteristic for illustration purposes only:

21

ACoC tests for triang()
2 2 2
2 2 1
2 2 0
2 2 -1

2 1 2
2 1 1
2 1 0
2 1 -1

2 0 2
2 0 1
2 0 0
2 0 -1

2 -1 2
2 -1 1
2 -1 0
2 -1 -1

1 2 2
1 2 1
1 2 0
1 2 -1

1 1 2
1 1 1
1 1 0
1 1 -1

1 0 2
1 0 1
1 0 0
1 0 -1

1 -1 2
1 -1 1
1 -1 0
1 -1 -1

0 2 2
0 2 1
0 2 0
0 2 -1

0 1 2
0 1 1
0 1 0
0 1 -1

0 0 2
0 0 1
0 0 0
0 0 -1

0 -1 2
0 -1 1
0 -1 0
0 -1 -1

-1 2 2
-1 2 1
-1 2 0
-1 2 -1

-1 1 2
-1 1 1
-1 1 0
-1 1 -1

-1 0 2
-1 0 1
-1 0 0
-1 0 -1

-1 -1 2
-1 -1 1
-1 -1 0
-1 -1 -1

ACoC yields 4*4*4 = 64 tests for triang()!

This is almost certainly more than we need

Only 8 tests have all sides greater than zero

22

Idea 2: use at least one value from each block

• Each Choice Coverage (ECC) Criterion : One value from each block for
each characteristic must be used in at least one test case.

• The number of resulting tests is the largest number of blocks among
all characteristics :

i

23

ECC Example

• These three tests satisfy ECC: (A, 1, x), (B, 2, y), (A, 3, x)
• There are many ways to pick tests that satisfy ECC
• Do you see a weakness of ECC?
• ECC doesn’t require using a value with other values

• e.g., (A, 2, y) may reveal a fault

Characteristic b1 b2 b3

q1 A B
q2 1 2 3
q3 x y

24

Idea 3: require pair-wise combinations

• Pair-Wise Coverage (PWC) Criterion : A value from each block for
each characteristic must be combined with a value from every block
for all other characteristics.

• The resulting number of tests is at least the product of the two largest
characteristics: Q

i=1 i
Q
j=1, j!=i j

25

PWC Example

• 5 combinations with A: (A, 1), (A, 2), (A, 3), (A, x), (A, y)
• 5 combinations with B: (B, 1), (B, 2), (B, 3), (B, x), (B, y)
• 6 combinations with q2 and q3 values: (1, x), (1, y), (2, x), (2,y), (3, x), (3, y)
• These 16 combinations can be combined in several ways:

(A, 1, x) (A, 2, x) (A, 3, x) (A, -, y)
(B, 1, y) (B, 2, y) (B, 3, y) (B, -, x)

Characteristic b1 b2 b3

q1 A B
q2 1 2 3
q3 x y

26

Idea 4: extend pairwise to t-wise

• Problem(?): pair-wise only requires all two-combinations values
• e.g., we may not choose (A, 2, y) on the previous slide

• The fault may be revealed by checking t-combinations

• t-Wise Coverage (TWC) Criterion : A value from each block for each
group of t characteristics must be combined

27

Some questions about t-wise coverage

• What is the least number of resulting tests?

• What happens if t is equal to the number of characteristics?

• Does t-wise coverage help much more than pair-wise coverage?

28

A note on the ISP criteria that we saw so far

29

Idea 5: use domain knowledge

• Base Choice Coverage (BCC) Criterion :
1. A base choice block is chosen for each characteristic, and a base test

is formed by using the base choice for each characteristic.
2. Subsequent tests are chosen by holding all but one base choice

constant and using each non-base choice in each other characteristic

• The resulting number of tests: one base test + one test for each other block

• BCC allows using domain knowledge to select the base choice blocks
30

Q
i=1 i

BCC Example

• Let ‘A’, ‘1’, and ‘x’ be the base choice blocks in q1, q2, and q3 respectively

• Base choice test: (A, 1, x)

• Additional tests: (B, 1, x)
(A, 2, x)
(A, 3, x)
(A, 1, y)

Characteristic b1 b2 b3

q1 A B
q2 1 2 3
q3 x y

31

Idea 6: what if I cannot choose 1 base choice?

• Multiple Base Choice Coverage (MBCC) Criterion :
• At least one, and possibly more, base choice blocks are chosen for

each characteristic, and base tests are formed by using each base
choice for each characteristic at least once.

• Subsequent tests are chosen by holding all but one base choice
constant for each base test and using each non-base choice in
each other characteristic.

• See textbook for the formula of upper bound of resulting tests

32

Recap on ISP coverage criteria

33

T-Wise
Coverage

TWC

Multiple Base
Choice Coverage

MBCC

Pair-Wise
Coverage

PWC

Base Choice
Coverage

BCC

All Combinations
Coverage

ACoC

Each Choice
Coverage

ECC

Which of these criteria subsume the other(s)?

Subsumption among ISP criteria

34

T-Wise
Coverage

TWC

Multiple Base
Choice Coverage

MBCC

Pair-Wise
Coverage

PWC

Base Choice
Coverage

BCC

All Combinations
Coverage

ACoC

Each Choice
Coverage

ECC

Summary: Input Space Partitioning

• Step 1: Identify testable functions in your program

• Step 2: Find all input parameters

• Step 3: Model the input domain

• Step 4: Use a criterion to choose combination of values

• Step 5: Refine combinations of blocks into test inputs

35

Next…

• Graph-based Model-Driven Test Design

36

