
CS 5150, SP22

Page 1 of 6

Lecture 11: Requirements II
Lecture goals

• Identify common architectural styles (continued)

o Three tier architecture

o Model-view-controller

• Encapsulate deployments using virtualization

Architectural styles

Three tier architecture
• Extension of client/server model

• Commonly used for small-medium web sites

• Classic example: LAMP stack

Extend basic website with data store

Component diagram

Significance of components (replaceable binary elements):

• Any web browser can access the website

• Database can be replaced by another that supports the same interface

CS 5150, SP22

Page 2 of 6

Three tier architectural style

Internal complexity

Presentation tier may house internal complexity, but as long as it supports the same interface, it is still a

binary-replaceable component

Model view controller
• Beware: many variations

• Some are architectural styles: system-level responsibilities partitioned into different

components

• Example: Play Framework

• Some are program design patterns: functionality divided between different classes

• Focus on reusable controls

• Example: Swing widgets

• Variation on which logic is widget-level vs. form-level (MVC vs. MVP)

• Variation on which classes communicate directly (MVC vs. MVA)

CS 5150, SP22

Page 3 of 6

• Variations in model storage (domain objects, DB record sets, immutable store)

Component diagram

Features of MVC
• Separated presentation

• Decouple model and view (replaceable components)

• Multiple (possibly simultaneous) views supported

Example: “mission control” terminal

View
• Presents application state and controls to user

• Typically subscribes to model for notifications of state changes

• "Observer pattern"

• Responsible for rendering to a particular interface

• Drawing graphics, generating HTML, printing text

• Sends user input to controller

• A single model can support multiple views

• Example: web app, native app

Model
• Records state of application and notifies subscribers

• Responds to instructions to change state (from controller)

• Does not depend on either controller or view

• State may be stored in objects or databases

CS 5150, SP22

Page 4 of 6

• May be responsible for some application logic (e.g. input validation)

Controller
• Manages user input and navigation

• Defines application behavior

• Maps user actions to changes in state (model) or view

• May interact with external services via APIs

• May be responsible for some application logic (e.g. input validation)

• Variety in distribution of duties between model and controller

Publish-subscribe
• Event-driven control

• Application responds to external stimuli and timeouts

• No centralized orchestration

• Very loose coupling – components communicate via message broker

• Easy to extend

• Difficult to analyze (observer pattern)

• No control over what (if any) code responds to an event

• Potential for conflicts (multiple components respond in incompatible ways)

• Potential for silently dropped events

• Call stacks may not reflect causality

Activity: system decomposition
• What happens when I tap "send" in a mail app on my phone?

• Draw a hardware block diagram

• Draw layers of system software

Closing remark
• Beware software architectures that resemble corporate hierarchy

• Refactoring more disruptive than reorgs

• Be aware of and accommodate political context, but architecture should serve the

application more than the developer

CS 5150, SP22

Page 5 of 6

Virtualization

Deployment concerns
• Dependency conflicts

• Configuration, data sprawl

• OS portability

• Unintended interactions

• Filesystem has same problems as global variables

• Solution: Encapsulation; but...

• Deploying on separate machines risks under-utilization

Virtual machines
• Multiple OS instances running on one machine

• Real hardware is managed by host OS or hypervisor

• Improves hardware utilization, reduces cost

• Avoids energy consumption by redundant hardware

• Stateful – still risks data sprawl

• Address with automated administration

• High overhead – software redundancy

• Examples: VMware, VirtualBox, Xen, Hyper-V

System configuration management
• Automate deployments

• Installing dependencies

• Configuring OS

• Configuring application

• Combat sprawl

• Examples: Ansible, Puppet, Chef, Vagrant

Containers
• Trade OS heterogeneity for reduced redundancy

• Still isolate filesystem, network without duplicating OS

• Lightweight – new instances start quickly

• Improves elasticity

CS 5150, SP22

Page 6 of 6

• Often encapsulates a single application

• Often treated as stateless (don't write to filesystem)

• Examples: Docker, LXC

“Serverless”
• Computation nodes are stateless, ephemeral, and event-triggered

• Data store services still persist state, but are application-agnostic

• Application decomposed into event-handler functions

• Event dispatch, container lifetime managed by platform

Three tier vs. serverless
https://martinfowler.com/articles/serverless.html

Microservices
• Components encapsulate services and expose them via standard interfaces. Are ideally binary-

replaceable

• In practice, many frameworks for managing modular applications are language-specific

(e.g. OSGi for Java)

• OOP abstractions like objects, methods are complicated at language boundaries and

distributed deployment

• Microservices constrain component definition to reduce coupling

• Language-agnostic protocols (e.g. RESTful HTTP)

• Independently deployable

https://martinfowler.com/articles/serverless.html

