
CS 5150 SP22

 1

Lecture 9: Models
Poll: What review feedback would you give?
util.h:
using namespace std;
/**
 * Interpret a CipherString character as an integer modulo 35.
 *
 * @param c Character to convert to integer (must be in '0-9A-Z').
 * @return Integer corresponding to character (in 0..35).
 */
int charToInt(char const c);
...
Preview: static analysis

• Tools that identify likely problems just by looking at source code
o Syntax errors
o Likely bugs (non-trivial type coercions, deviation from standard

patterns, unused code, …)
o Violations of style guidelines

• Examples:
o Compilers (C++: use at least -Wall -Wextra)
o Linters
o Formatters
o FindBugs (Java)
o CodeSonar

Lecture goals
• Conduct effective code reviews
• Select appropriate models to improve communication during multiple process

steps (requirements, architecture, program design)
• Visualize models using UML

Models
Purpose of models

• Simplification of reality
• Facilitates communication during process steps

o Requirements
o Architecture (system design)
o Program design

• Need multiple models

CS 5150 SP22

 2

o Different perspectives
o Different levels of completeness, formality

• Larger, more complex projects benefit from more formality
• Most models are consumed by humans

Representing models
• UML: Unified Modeling Language

o Models consist of diagrams and specifications
o Many different diagram types
o Particularly well suited to object-oriented design

• Can serve many purposes
o Facilitate discussion
o Provide documentation
o Generate code

• Why not code?
o Can have multiple models with simplifications serving different

perspectives
o Code usually must pick a single abstraction; can't manifestly show

correctness for other perspectives
o Code can introduce syntactic distractions, platform details
o Sometimes, (pseudo)code is the clearest specification

Modeling perspectives
• External

o Represent the (simplified) context of the system
• Interaction

o How do user and component interactions proceed?
• Structural

o How are system components organized?
o How is data represented?

• Behavioral
o How system responds to events, changes over time

Interaction models
• Modeling user interactions helps catalog functional requirements

o Use case diagrams
• Modeling inter-system interaction helps highlight potential communication

problems
o Sequence diagrams

Use cases
• Discrete task involving external interaction with the system

CS 5150 SP22

 3

• Actor
o A role, not an individual
o Beneficiary or instigator
o May be other systems
o Use specific, not generic names

• Use case
Pair with textual description

• Metadata
o Name of use case
o Goal of use case
o Actor(s)
o Trigger
o Preconditions
o Postconditions

• Flow of events
o Basic flow
o Alternate flows
o Exceptions

Example
Name: Take exam
Goal: Enables a student to take an exam online with a web browser
Actor(s): ExamTaker
Trigger: ExamTaker is notified that the exam is ready to be taken
Preconditions: ExamTaker is registered for course; ExamTaker has authentication
credentials
Postconditions: Completed exam is ready to be graded
Basic flow ("Take exam" use case)

1. ExamTaker connects to sever via web browser
2. Server checks whether ExamTaker is already authenticated; if not, triggers

authentication process
3. ExamTaker selects an exam from list
4. ExamTaker repeatedly selects a question and either types in a new solution, edits

an existing solution, or uploads a file with a solution
5. ExamTaker either submits exam or saves current state
6. When exam is submitted, server checks that all questions have been attempted

and sends acknowledgement to ExamTaker
Alternative flows

• Alternate flow
o Alternative path to successful completion of use case
o Example: Take exam

ExamTaker

Take exam

View feedback

Request regrade

CS 5150 SP22

 4

§ Resuming exam from saved state
§ Solution file format not accepted
§ Submission is incomplete

• Exceptions
o Lead to failure of use case
o Example: Take exam

§ Authentication failure
Relationships
<<extends>>

• Defer extra detail to other use cases
• Useful for alternate flows and exceptions

<<includes>>
• Include steps from another use case
• Useful when common procedure is required

in multiple contexts
Sequence diagrams

• Show sequence of interactions (ordering, causal relationships) between actors
and objects

o Excellent for documenting communication protocols
o See examples at https://www.eventhelix.com/networking/

Behavioral models
• Model dynamic behavior of system during execution
• How does system process data or respond to events?
• Data-driven models

o Show sequence of processing steps from input to output
• Event-driven models

o How does system respond to events? (internal and external)
o Assumes finite number of application states
o Great for embedded, real-time systems

Data flow (activity) diagrams
• Activity: rounded rectangle
• Data: rectangle or labeled edge
• Data source/sink: rectangle
• Beginning/end: circle

ExamTaker

Take exam

Incomplete submission

Authentication failure

<<extends>>

<<extends>>

CS 5150 SP22

 5

Example: university admissions

Refined example

How to specify logic?

• Data flow & sequence diagrams show high-level flow; must be augmented by
specifications for low-level behavior

• Decision table
o Process columns from left to right
o Rules are specific and testable
o Can be clearer to clients than code

Flowcharts and pseudocode
Flowchart

• Shows logic (not just flow)
• Used to specify computer programs

before modern programming
languages

Pseudocode
• Compact and precise
• Composable
• Easy to implement
• Harder to see flow

Mathematics
• Many systems are well-described by mathematical models

o Differential equations
o Probability distributions
o Integrals
o Filters

CS 5150 SP22

 6

o Interpolation
o Curve fits

• Document progression of approximations and domain transformations
o Frequency vs. time domain
o Continuous vs. discrete

§ Differential vs. difference equations
§ Integration vs. quadrature
§ Root solve vs. Iteration

• Higher-level specifications give developers more flexibility, can improve
maintainability

State charts / transition diagrams
• Model system as a finite set of states
• A transition moves the system from one state to another

o Triggered by a condition
o Mathematically, a function from S⨯C → S

• Can be hierarchical
• Also useful for user interface navigation

Transition tables
• Specify state transitions in textual form
• Useful when transitions are "dense" (most conditions are applicable in most

states)
o Example: physical buttons on embedded device

• Can visually check for completeness

