
Lecture 28:
Finale
CS 5150, Spring 2022



Course reminders

• Final report due tonight (Gradescope)
• Handoff package committed to repo/wiki (will take snapshot tonight)

• Please include final presentation slides

• Working code merged to master/main branch (resolve conflicts)

• Work with client on testing deployment

• Peer evaluations for session 5 (CMS)

• Course evaluation due Fri
• Homework point

• Instructor office hours continue this week
• Happy to discuss software engineering more generally



Lecture goals

• Recognize ethical dilemmas in software projects

• Know when to cancel a project

• Celebrate project achievements



Professionalism & Ethics



Poll: PollEv.com/cs5150

What should you do if you discover a major security vulnerability in a 
piece of widely-used software?

http://PollEv.com/cs5150


Responsible disclosure

• AKA "coordinated vulnerability disclosure"

• Coordinate timing of announcement with vendor
• Give them time to patch products, prepare press response

• Upper bound on timing to hasten vendor action (typ. 90 days)

• For open-source projects, look for security policy (SECURITY.md)
• Contact Vulnerability Management Team or owner

• Do not post details to public mailing lists, chat rooms

• May be assigned placeholder CVE to coordinate efforts without 
disclosing details



Poll: PollEv.com/cs5150

Which of these development efforts would you be comfortable 
contributing to?

• Drug marketing campaign

• Click fraud

• Selling 0-days

• Reverse engineering

• Weaponized AI

• Selling personal data

• Bitcoin mining

http://PollEv.com/cs5150


Ethics

• Software can harm society beyond physical injury

• Personal fulfilment is important too
• Take responsibility for your work

• Avoid future regrets

• Compared to traditional engineering, software has less oversight and 
wider impact
• Amplification: One day's work can affect millions of people, consume millions 

of hours



2009 HP webcam

https://youtu.be/_YOoukA_Kp8

https://youtu.be/_YOoukA_Kp8


How bad is this?

• Just a buggy, experimental gimmick for consumers?
• Tracking faces with dark complexion is more technically difficult

• Demeaning to users, especially if systematic

• When widespread, denies some users full participation in modern 
society

• What about biometric authentication?

• What about criminal suspect databases?



Diversity

• Wider impact => more diverse user base
• => More potential to reinforce stereotypes, inequity

• Failure to anticipate/respond to biased systems can lead to major 
societal (not to mention reputational) harm

• Need to expand diversity during development (shift left)
• More diverse developer teams
• More diverse user testing

• "Single source of truth" does not apply to human society
• Disputed borders
• Different interpretations of words/phrases/symbols
• Different value systems



Ethics extends beyond code

• Hiring practices
• Beware affinity bias, groupthink

• Promotions/opportunities
• Beyond mentoring - advocate for coworkers who do good work but seem to 

go unnoticed

• Decision-making
• Don’t defend decisions solely on precedent

• Look beyond direct “bottom line” impact



ACM Code of ethics and professional practice

1. PUBLIC – Software engineers shall act consistently with the public interest.

2. CLIENT AND EMPLOYER – Software engineers shall act in a manner that is in the best interests 
of their client and employer consistent with the public interest.

3. PRODUCT – Software engineers shall ensure that their products and related modifications 
meet the highest professional standards possible.

4. JUDGMENT – Software engineers shall maintain integrity and independence in their 
professional judgment.

5. MANAGEMENT – Software engineering managers and leaders shall subscribe to and promote 
an ethical approach to the management of software development and maintenance.

6. PROFESSION – Software engineers shall advance the integrity and reputation of the profession 
consistent with the public interest.

7. COLLEAGUES – Software engineers shall be fair to and supportive of their colleagues.

8. SELF – Software engineers shall participate in lifelong learning regarding the practice of their 
profession and shall promote an ethical approach to the practice of the profession.



Examples



Causes of poor outcomes

• Normalization of risk
• Space Shuttle Columbia

• Over-constrained compute resources
• Numerous space systems

• Over-trust in inherited components
• Ariane 5

• Discounting cost of “inert” or “extra” components

• Changing circumstances

• Poor client-dev understanding



Ask for help

• University team given government funds to build high-performance 
gateway

• Promising young developer hired, assigned task

• Task too difficult, but he hid his problems for months

• Project cancelled, nothing delivered

• Don’t try to maintain a reputation at expense of project

• Asking for help is expected, helps team grow

• Leaders must monitor new employees more closely



Know when to cancel

• Senior management (without consulting technical staff) decides to 
replace administrative software with COTS solution
• Adopted schedule and budget from vendor’s marketing (hopelessly 

optimistic)

• Staff became dispirited; many left, including CIO

• What should new CIO do?

• Analyze situation, provide visibility to leadership

• Identify work worth continuing

• Cancel remainder of project



Know when to start over

• University working on a joint project with a company to develop new 
system software

• After two years, junior developer convinced university leader that 
technical approach was wrong

• University decided to start over, company decided to keep going

• Both finished around same time, university version was superior

• The best time to refactor is before the system is first deployed



Project summaries



Takeaways

• Learning to navigate a large codebase is hard
• Look for similar changes in its commit history
• Trace execution of familiar functionality

• Avoid silos
• Shared sense of responsibility

• Accountability
• Explicit team expectations (including schedule)
• Concrete deliverables

• Schedule estimation is hard
• Use modeling, mock-ups to elicit detailed requirements early
• Leave plenty of buffer for changes after testing (including deployment)



Successes

• External clients happy

• 11 internal projects achieved MVP

• Shoutouts
• Team 10 (Gerrit)

• Team 17 (Review Board)



Conclusions



• Software engineering is bigger than programming
• More stakeholders
• Collaborative development
• Quality has a cost

• Successful projects involve tradeoffs, communication
• Different projects warrant different approaches

• Big projects are possible
• With planning & teamwork, can accomplish far more than solo

Good luck with all your future endeavors!


