
Lecture 27:
Non-functional 
properties II

CS 5150, Spring 2022



Course reminders

• Course evaluations now open, due Fri, May 13
• We want your constructive feedback!

• This offering tried to combine the traditional project with material on modern, scalable 
tools and techniques; how useful was this?

• Counts towards homework grade

• Final presentations
• All times and rooms have been set

• Peer evaluations
• Scope is most recent session (not entire semester)

• Please leave comments



Deployment

• Client is not a fellow developer; needs to validate a production
deployment
• Not "click 'Run' in this IDE"

• Not a "DEBUG" build, but a Release build

• Not using an embedded dev server

• Client has data produced by old system
• Data must be updated or imported

• A "clean slate" acceptance test is not sufficient

• Internal projects: See Ed post for clarifications



Security
… continued from Lecture 26



Poll: PollEv.com/cs5150

A web service sorts user-provided data using QuickSort with median-
of-3 pivoting. Uploads are limited to N bytes. What is the worst-case 

time complexity a user can trigger?



Availability and denial-of-service (DoS)

• Software that cannot be used is 
not useful
• Even if results are correct and data 

is safe

• Network attacks

• Complexity attacks
• Beware algorithms with

worst case >> average case

• Compatibility
• Beware downgrade attacks

• Avoidance & mitigation
• Quotas & timeouts

• What is the appropriate 
failsafe configuration?
• Fail-closed vs. fail-open

• e.g. ATM vs. secure exit



Responsibility & accountability

• Software engineers and system administrators have access to highly 
privileged data and capabilities
• Examples of abuse: data leaks, deliberate bugs

• Who had access to or did access certain resources?
• Require authentication for code, config changes

• Audit logs



Debugging features & defaults

• Often useful to bypass access control during development
• Spoof multiple user roles for testing

• Manipulate system at low level to diagnose bugs

• Tempting to allow easy access in production
• Tech support, service technicians, remote patching

• Backdoor accounts, default credentials, unnecessary services are 
major source of vulnerabilities
• Audit release builds for hard-coded accounts, debug-only components



IP & secrets protection

• Compiled software can be reverse-engineered
• Strip debugging symbols for release (also saves space)

• Save a copy internally for developers

• Obfuscation, self-encryption can slow down analysis

• Disable microcontroller debugging features (including flash readout)

• Embed copyright, unique markers

• Less of a concern for open-source software, service providers

• Protect high-value secrets (private keys, API keys)
• Do not commit to source code repository

• Use secure hardware modules



Trust and UI

• Users make poor security decisions
• User interfaces (e.g. web browsers, mobile OSs) have a large impact on 

quality of decisions

• Consumer Reports: poor rating to any device that allows poor user 
security or default accounts



Safety and reliability



Terminology

• Mishap (generic): an event that 
is potentially unsafe

• Hazard: software exhibits 
unsafe behavior, but mitigation 
is successful

• Incident: Unsafe behavior leads 
to unsafe conditions, but 
circumstances avoided injury

• Accident: Unsafe behavior 
leads to injury

• Risk (review)
• Likelihood

• Consequence

Better Embedded System Software. Koopman 2010



Safety Integrity Levels (SIL)

• 4: Catastrophic (likely to kill 
people)

• 3: Critical (likely to cause injury, 
possibly death)

• 2: Significant (might cause 
injury)

• 1: Minor (contributes to unsafe 
conditions)

• 0: Nuisance

• Different levels target different 
mishap rates
• 4: 1,000,000,000 hrs

• 3: 10,000,000 hrs

• 2: 100,000 hrs

• 1: 1,000 hrs

• 0: 100 hrs

• Testing alone cannot verify most 
stringent mishap rates



Software safety classes

NASA

• Class A: Human-rated flight software

• Class B

• Class C: Testing & verification of class 
A/B

• Class D: Engineering design

• Class E: Exploratory utilities

• Class F: Business/IT

• Class G:

• Class H: General-purpose

Medical (IEC 62304)

• Class C: Death or serious injury 
possible

• Class B: Non-serious injury possible

• Class A: No damage to health possible

Criticality depends on intended use!



Theme: Different projects require different 
development processes
• Techniques for ensuring software quality can be expensive

• Choose a process that meets the needs of the application with 
minimal overhead
• But avoid a proliferation of different processes within an organization

• Example
• Class A: Process training, ticket vetting, multiple reviewers, test coverage, 

ticket review

• Class C: Ticket, one reviewer, verification evidence



Dependability terminology

• Fault: bit flip, execution of buggy code

• Failure: fault leads to incorrect computation

• Error: failure leads to observable misbehavior

• Mean Time Between Failures (MTBF): inverse of error rate
• Assume reliability decays exponentially with time

• After 1 MTBF, only 37% of units are still functioning without error



Hardware reliability

• Assumption of random, independent component failures
• Serial dependencies reduce reliability

• Redundancy increases reliability
• Rate of component failures increases, rate of system errors decreases

• Software must contend with hardware unreliability
• In datacenters, failures occur regularly

• Bit flips occur in high-radiation environments

• But hardware reliability analysis is a poor fit for software
• Violates assumption of random, independent failures

• Analysis and mitigation techniques from hardware do not apply



Voting

• Redundancy can be used to 
mitigate independent failures
• "Triple Modular Redundancy" 

common in space systems

• Aviation anecdotes
• Qantas 72: Single bad sensor value 

used instead of two good sensor 
values

• Boeing 737 MAX: Only one of two 
sensors used

Australian Transport Safety Bureau

https://www.atsb.gov.au/publications/investigation_reports/2008/aair/ao-2008-070.aspx


Software reliability

• Bugs are not random, independent
• Example: Ariane 5 rocket

• Example: F-22 crossing International Date Line

• Techniques to improve software reliability
• Improve software quality (process)

• State scrubbing
• Monitor health, invariants

• Restart failed subsystems

• Software diversity
• Example: Space shuttle



Watchdog timers

• Hardware feature in modern 
processors

• Expects a periodic "still alive" 
message

• Reboots system if message not 
received in time
• Startup runs self-tests, consistency 

checks, re-establishes invariants



Creating safe systems

• Creating safe systems requires analysis during requirements and 
system design beyond the scope of this course
• Failure Mode and Effects Analysis (FMEA)

• HAZOP (HAZard and OPerability)
• "What if [requirement] is {late, more, reversed}?"

• Fault Tree Analysis



Example: JBIG2

• How safety-critical is image compression in fax machines?
• https://www.dkriesel.com/en/blog/2013/0802_xerox-

workcentres_are_switching_written_numbers_when_scanning

• Also an example of how compatibility enlarges attack surface:
https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-
nso-zero-click.html

https://www.dkriesel.com/en/blog/2013/0802_xerox-workcentres_are_switching_written_numbers_when_scanning
https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html

