Lecture 24:
Delivery

CS 5150, Spring 2022

Test results

* See Gradescope for scores (out of 75 points); solutions in rubric
* Not sure about something? Askon Ed or in OHs
* If you see a scoring error (invalid rubric item applied), submit a regrade
request on Gradescope by Thursday (11pm)
* Statistics:
* Median: 79%
e Standard deviation: 12%
* Most commonly missed problems:
 Amdahl's Law: parallelization

e Latency vs. throughput
e Test brittleness

Project reminders

* Keep meeting with your client

* Reports are not an efficient way to get feedback
 Client gets final say on design (user testing informs your recommendation)

e Cl infrastructure is behind schedule

* Final presentation & delivery
e Details on Thursday

* Peer feedback
e Still trouble following directions
* If you give a "1", mustinclude a comment

Report #4 feedback

* Manual tests require a detailed test plan, including step-by-step
procedures and conditions for passing

* Make sure screenshots are legible at print sizes

* Involve client in design decisions

* Document alternative flows

* Double-check report requirements (e.g. current state of testing)

Remaining topics

* Deployment

* Security
* Input validation & taint tracking, injection, bugs, cryptography

 Safety & reliability

* Legal considerations
* Licenses, copyright, contracts, patents, privacy, exports

e Ethics

* Assignment: analyze dependencies and vulnerabilities

Poll: PollEv.com/cs5150

Ubuntu 22.04 LTS (long-term support) was released last week. Should
you upgrade your Linux (virtual) machines before the end of the
semester?

Vulnerabilities

 CVE: Common Vulnerabilities and Exposures

 Common identifier for specific vulnerabilities (not vulnerable systems)

* May be crosslinked with other databases (e.g. severity, product, weakness
category)
* NIST's National Vulnerability Database (NVD) includes common links and history
 Common Vulnerability Scoring System (CVSS) standardizes measures of severity
 Common Platform Enumeration (CPE) standardizes identifiers for vulnerable components

Releasing software

When is software ready to release?

 When it is feature-complete? * "The biggest risk to any software
effort is that you end up building
something that isn't useful.”

- Martin Fowler

* When it is bug-free?

* When it has soaked for long
enough"?

* On the release date?
e Continuously?

Traditional release process

Example: GCC * Challenges
* Need to coordinate process
* Features that miss merge window

1. Merge window (time-boxed) must wait until next cycle
* Branches that are "ready" are merged Problematic features are difficult to
to trunk remove
2. Bug fixes (time-boxed) * Branch divergence

e Cut release branch
* No new (coupled) features

3. Regression & doc fixes

4. Release
* When all high-priority bugs are fixed

Time-based vs. feature-based releases

Feature-based Time-based
* Product manager decides which ¢ All features that are completed
major features define the next (tested) by release deadline are
release included in release
* Developers argue for their * Features that are not ready must
features to be included wait until next release
* Which features should hold up * Shorter release cadence reduces

release? (tendency for inflation) cost of missing deadline

Risks of long release processes

e Delay in providing value to client * Example: YouTube

* May fall behind competition * Monolithic Python application
e Slow feedback on feature utility * Manual regression testing (50
. hours)
* Drain on morale * Requires release volunteers (lack
* Churn among release managers of automation)
prevents building expertise * Burnout leads to loss of expertise

e Difficult to diagnose issues

* Pain leads to over-conservatism, ¢ CD recommendation: don't slow
which leads to irrelevance down; speed up!

Principles of Continuous Delivery (CD)

* Agility * Component-based design and
e Release small updates frequently microservice architectures provide
* Automation modularity
* Modularity _ .
« Isolate changes * Most benefit comes from being
+ Enable delegation able to release frequently, not
. Data necessarily from actually doing it

e Monitor health metrics
e Evaluate feature effectiveness

e Rollout control

 Phased rollouts
* Rollbacks

Feature flags

* Tying new features to binary
builds is risky
* Binary rollout and rollback takes
time
* Risk of version skew

e Can't synchronize feature availability
with announcement

* Fixing a regression requires rolling
back all new features

* Runtime flags allow more
granular control
» Faster to propagate changes

e Can enable for arbitrary subset of
users

e Can toggle independently of other
features

* Build-time flags can be used to
avoid leaks

