
CS 5150, Spring 2022

Lecture 24:
Delivery



Test results

• See Gradescope for scores (out of 75 points); solutions in rubric
• Not sure about something? Ask on Ed or in OHs
• If you see a scoring error (invalid rubric item applied), submit a regrade 

request on Gradescope by Thursday (11pm)

• Statistics:
• Median: 79%
• Standard deviation: 12%

• Most commonly missed problems:
• Amdahl's Law: parallelization
• Latency vs. throughput
• Test brittleness



Project reminders

• Keep meeting with your client
• Reports are not an efficient way to get feedback

• Client gets final say on design (user testing informs your recommendation)

• CI infrastructure is behind schedule

• Final presentation & delivery
• Details on Thursday

• Peer feedback
• Still trouble following directions

• If you give a "1", must include a comment



Report #4 feedback

• Manual tests require a detailed test plan, including step-by-step 
procedures and conditions for passing

• Make sure screenshots are legible at print sizes

• Involve client in design decisions

• Document alternative flows

• Double-check report requirements (e.g. current state of testing)



Remaining topics

• Deployment

• Security
• Input validation & taint tracking, injection, bugs, cryptography

• Safety & reliability

• Legal considerations
• Licenses, copyright, contracts, patents, privacy, exports

• Ethics

• Assignment: analyze dependencies and vulnerabilities



Poll: PollEv.com/cs5150

Ubuntu 22.04 LTS (long-term support) was released last week. Should 
you upgrade your Linux (virtual) machines before the end of the 

semester?



Vulnerabilities

• CVE: Common Vulnerabilities and Exposures
• Common identifier for specific vulnerabilities (not vulnerable systems)

• May be crosslinked with other databases (e.g. severity, product, weakness 
category)
• NIST's National Vulnerability Database (NVD) includes common links and history

• Common Vulnerability Scoring System (CVSS) standardizes measures of severity

• Common Platform Enumeration (CPE) standardizes identifiers for vulnerable components



Releasing software



When is software ready to release?

• When it is feature-complete?

• When it is bug-free?

• When it has soaked for long 
enough"?

• On the release date?

• Continuously?

• "The biggest risk to any software 
effort is that you end up building 
something that isn't useful."
- Martin Fowler



Traditional release process

Example: GCC

1. Merge window (time-boxed)
• Branches that are "ready" are merged 

to trunk

2. Bug fixes (time-boxed)
• Cut release branch
• No new (coupled) features

3. Regression & doc fixes

4. Release
• When all high-priority bugs are fixed

• Challenges
• Need to coordinate process
• Features that miss merge window 

must wait until next cycle
• Problematic features are difficult to 

remove
• Branch divergence



Time-based vs. feature-based releases

Feature-based

• Product manager decides which 
major features define the next 
release

• Developers argue for their 
features to be included

• Which features should hold up 
release? (tendency for inflation)

Time-based

• All features that are completed 
(tested) by release deadline are 
included in release

• Features that are not ready must 
wait until next release

• Shorter release cadence reduces 
cost of missing deadline



Risks of long release processes

• Delay in providing value to client
• May fall behind competition

• Slow feedback on feature utility

• Drain on morale
• Churn among release managers 

prevents building expertise

• Difficult to diagnose issues

• Pain leads to over-conservatism, 
which leads to irrelevance

• Example: YouTube
• Monolithic Python application

• Manual regression testing (50 
hours)

• Requires release volunteers (lack 
of automation)
• Burnout leads to loss of expertise

• CD recommendation: don't slow 
down; speed up!



Principles of Continuous Delivery (CD)

• Agility
• Release small updates frequently

• Automation
• Modularity

• Isolate changes
• Enable delegation

• Data
• Monitor health metrics
• Evaluate feature effectiveness

• Rollout control
• Phased rollouts
• Rollbacks

• Component-based design and 
microservice architectures provide 
modularity

• Most benefit comes from being 
able to release frequently, not 
necessarily from actually doing it



Feature flags

• Tying new features to binary 
builds is risky
• Binary rollout and rollback takes 

time
• Risk of version skew

• Can't synchronize feature availability 
with announcement

• Fixing a regression requires rolling 
back all new features

• Runtime flags allow more 
granular control
• Faster to propagate changes

• Can enable for arbitrary subset of 
users

• Can toggle independently of other 
features

• Build-time flags can be used to 
avoid leaks


