
Lecture 22:
Dependency 
management

CS 5150, Spring 2022



Administrative reminders

• In-class test this Thursday (April 21)
• If medical/religious conflict, must notify instructor before exam

• Final project delivery in 3 weeks

• Complete peer evaluations for session 4



Questions on old material?



Quick review

• What is the critical path in an activity graph?

• What distinguishes incremental delivery from iterative refinement?

• What are some properties of good requirements?

• How is a virtual machine different from a container?

• When would you employ the Builder pattern?



Lecture goals

• Manage application dependencies and associated risks



Dependencies



Internal vs. external dependencies

Internal

• Maintainers' goals are 
(hopefully) aligned

• Can audit for all uses of a library

• Can coordinate large-scale 
changes of all code using library 
(facilitated by monorepo)

• Can manage with source control
tools, policies

External

• Cannot assume coordination 
between library and users

• Cannot enforce compatibility, 
maintenance policies

• Cannot control release schedule

• Danger of diamond dependency 
problem

• Domain of dependency 
management



Why depend on external code?

Pros

• Increase productivity

• Benefit from higher quality
• External expertise

• Incorporate experience from 
diverse users

• Outsource maintenance burden

Cons

• Dependence on code outside of 
your control
• Do you have the resources to audit 

it?

• Potential for dependency bloat

• Potential for incompatibilities

• Supply chain vulnerabilities



Where to get dependencies from?

• Defer to users / distributors
• E.g. List of Debian packages to install
• Common for libraries, system 

software (C/C++); often used for 
"standard" dependencies

• Build system should confirm that 
dependencies are satisfied

• May assume elevated privileges, may 
mask portability

• "Vendoring"
• Copy third party source code 

(or artifacts) into your 
repository

• Artifact repositories
• Download binary artifacts and 

their transitive dependencies
• E.g. Maven Central, Python 

Wheels, Debian packages

• Source code repositories
• Download source code and compile 

locally
• E.g. Cargo.io, BSD ports, npm



Repository mirrors

• Depending on public repositories is risky
• What if their servers are not available?

• What if packages are removed?

• Do you trust that an artifact will never change?

• Does your employer's firewall block binaries? Do they need to scan for 
viruses?

• Can point build tools to an internal repository mirror, rather than the 
public Internet
• Tradeoff between maintenance and control



Dependency networks

• Dependencies have their own transitive dependencies
• Demo: sbt dependencyTree

• Assignment (next week): analyze dependency tree for a 
real application



Diamond dependency problem

• Consider an application that 
uses a computer vision library 
and a GUI toolkit

• Suppose the CV library depends 
on libpng-1.4, but the GUI 
toolkit is linked against libpng-
1.2. These versions are 
incompatible

• What version of libpng can your 
application link against?

• See Software Engineering at 
Google, Figure 21-1



Dependency management

• What versions of dependencies 
should you import?

• When should you upgrade 
dependency versions?

• SwE@Google book outlines four 
options:
• Never upgrade

• Semantic versioning

• Bundled distributions

• "Live at HEAD"



Dependency management tradeoffs

Never upgrade

• Predictable
• Avoids failures due to changes 

outside of your control

• Natural when starting out, or for 
short-lived projects
• Compatible with "vendoring"

• What happens when a dependency 
has a security vulnerability?

• What happens when a new 
dependency depends on newer 
versions of old dependencies?

Bundled distributions

• Defer dependency management to 
distribution maintainer
• Responsible for maintaining 

compatibility while incorporating 
security updates

• Depend on the bundle and 
whatever dependency versions it 
provides
• Common for commercial applications

• Limits (verified) portability
• Can't leverage latest features



Semantic versioning (SemVer)

• Dependency version numbers obey MAJOR.MINOR.PATCH format
• Changes to PATCH should be fully compatible (bug fixes, security fixes)
• Changes to MINOR may add functionality in a backwards-compatible manner
• Changes to MAJOR indicate API changes

• Assumed by many build tools
• Depend on a specific MAJOR version and a minimum MINOR version

• Challenges
• Not all dependencies follow this scheme
• Human maintainers make mistakes
• Hyrum's Law: one person's "bug" is another's "feature"
• Can be over-constraining (no solution to SAT problem)

• Heuristics for relaxing some requirements



Which version to choose?

• For deterministic builds, choice 
shouldn't depend on when 
dependency resolution is 
performed
• Lock files: capture results of 

dependency resolution
• Newer dependencies will only be 

considered if locked versions do 
not satisfy constraints

• Commit lock file to repository
• It will be changed (and should be 

recommitted) when dependency 
resolution is run

• Go recommends 
choosing minimum (MINOR) 
version required by 
dependency network

• If MINOR versions 
are maintained as release 
branches, hopefully security 
fixes will be backported to them 
as PATCH releases



Compatibility

API

• Names of public functions and 
data types

• Recompilation should succeed
• May be required to incorporate 

updates

ABI

• Function calling conventions

• Data structure layout

• Instructions, inlined system 
functions

• Dependent code does not need 
to be recompiled to incorporate 
updates



Compatibility

Backward compatibility

• Code that worked with an older 
version of a dependency will work 
with a newer version
• Preserved across MINOR versions

• Implies that public types and 
functions cannot be removed

• For ABI compatibility, public data 
structures cannot change outside 
of "reserved" fields

Forward compatibility

• Code built with a newer version of 
a dependency will also work with 
an older version
• Preserved across PATCH versions

• Implies that no new public types, 
fields, or functions may be added



"Live at HEAD"

• Analogous to trunk-based development in a monorepo

• Dependency maintainer responsible for not breaking all users
• Effectively requires continuous integration for all software in the world

• If compatibility cannot be maintained, maintainer will provide upgrade tool

• Some of this infrastructure already exists
• "Rolling" Linux distributions (e.g. Gentoo) integrate tens of thousands of 

packages continuously

• Programming languages (e.g. Scala, Rust) proactively test all changes against 
major libraries/applications



Dependency vulnerabilities

• NPM has a history of 
dependency-related disasters
• left-pad unpublished

• Bitcoin theft transitive 
dependency in event-stream

• Ukraine war "protestware" in 
node-ipc

• Why was impact so large?
• Tools depended on external 

repository services rather than 
internal mirror

• Projects depended on floating 
instead of fixed versions

• Projects were built "too 
continuously"

• Fine-grained dependencies 
depended upon by many other 
libraries


