
Lecture 21:
Build systems and 

dependencies
CS 5150, Spring 2022



Administrative announcements

• Report #4 due tomorrow (Friday)

• In-class exam next Thursday (Apr 21)
• Sample questions available on Canvas

• E-mail instructor if you have an approved conflict outside of your control 
(hospitalization/isolation, religious observance)



Lecture goals

• Evaluate application performance

• Automate compilation using build systems

• Manage application dependencies and associated risks



Performance
… continued from Lecture 20



Amdahl's Law

• Speedup: S = T_before / T_after

• Identify portion p of runtime cost amenable to optimization
• T_before = p*T + (1 - p)*T

• Let s be speedup of optimization on this portion
• Example: s = 10 for parallelizing on a 10-core machine

• Often interested in limit as s → ∞

• T_after = p*T/s + (1 - p)*T

• S(s) = 1/(1 - p + p/s)

• S → 1/(1 - p)



Profiling

• How can we estimate p?

• Where should our optimization 
efforts be focused?

• Profiling techniques
• Sampling: Periodically interrupt 

process and examine stack trace
• Low overhead
• Incomplete data

• Tracing: Record whenever a 
function is called or returns
• High overhead
• Complete function counts
• Timing may be distorted

• Instruction-level: Estimate cost of 
each statement
• Requires CPU model



Profiling tools

• Native code
• perf (Linux)

• gprof

• callgrind

• Python
• cProfile

• Java
• JProfiler

• VisualVM

• NetBeans

• Visualizers:
• kcachegrind

• Flame graphs

• Web browser profilers

https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html


Monitoring

• To detect degradation and catch regressions, need to log and monitor 
performance metrics
• Can measure duration of tests in CI, but benefits from unloaded servers

• For services, also need to monitor performance in production
• Network conditions, load are dynamic

• With scalable microservice architectures, counterintuitive bottlenecks may 
appear
• Scaling the wrong components can remove beneficial backpressure



Soak testing

• Tests often execute for less time than a production system
• Many production systems never turn off (e.g. embedded controllers)

• Some defects (e.g. memory leaks, fragmentation) are innocuous for short 
runs

• Soak testing: Subject system to significant load for extended period of 
time (days, months, years)
• Be sure to log key performance metrics (cycle time, memory usage)

• Not particularly compatible with a rapid CI pipeline
• Still good to run periodically to catch issues sooner



Build systems



Objectives

• Automate compilation & linkage of all components

• Rebuild necessary components when things change

• Manage multiple configurations

• Manage external dependencies

• Automate testing

• Automate release actions
• Strip debugging symbols

• Minify web assets

• Generate installers

Also relevant for 
interpreted languages



Options

• Write your own scripts
• Lots of redundant effort to provide 

flexibility and functionality
• Maintenance cost of bespoke system

• Follow conventions
• Easy way for new projects to take 

advantage of build tool features with 
minimal effort

• Good IDE support
• Hard to adapt for large, 

heterogeneous, legacy projects
• Difficult to diagnose implicit rules
• Can lead to bloated dependencies

• Configure a build tool
• Must learn a complicated tool & 

configuration syntax
• But knowledge is transferrable

• Must maintain build configuration
• But being explicit is often good, avoids 

dependency bloat

• Can accommodate custom 
procedures
• Code generation
• Multiple languages

• IDE may require additional 
configuration



Common build tools

• Make [1976]
• Autoconf
• CMake
• Ant + Ivy, Maven, Gradle (Java)
• sbt (Java, Scala)
• Pip, setuptools (Python)
• npm, Bower (Javascript)
• Cargo (Rust)
• latexmk (LaTeX)
• Bazel

• Responsible for constructing 
dependency graph
• Task-oriented: Targets can execute 

arbitrary commands
• Hard to correctly specify when a task 

does not need to be rerun
• Hard to parallelize safely

• Artifact-oriented: Targets must 
declare inputs, outputs
• Enables safe caching, parallelization



Make example

• Built-in implicit rules
• Knows how to compile .cc files to 

get .o file

• Uses standard env vars

• Compiler provides header 
dependencies for future use
• But what if a header with the 

same name is created elsewhere?

• Does not depend on variable 
values

• Use .PHONY to declare tasks that 
don't produce artifacts

• First target is default

See scrambler/c++/Makefile



State-of-the-art (Bazel)

• Sandboxing to enforce artifact 
dependencies

• Distributed compilation, caching

• Test dependencies & caching

• Dependencies include env vars, 
toolchains

• Conservative header 
dependency extraction

• Extensible for custom languages, 
tools



Dependencies



Internal vs. external dependencies

Internal

• Maintainers' goals are 
(hopefully) aligned

• Can audit for all uses of a library

• Can coordinate large-scale 
changes of all code using library 
(facilitated by monorepo)

• Can manage with source control
tools, policies

External

• Cannot assume coordination 
between library and users

• Cannot enforce compatibility, 
maintenance policies

• Cannot control release schedule

• Danger of diamond dependency 
problem

• Domain of dependency 
management



Reading

• Software Engineering at Google, Chapter 21: Dependency 
Management


