
Lecture 20:
Dynamic
analysis &
testing III
CS 5150, Spring 2022

Administrative announcements

• Report #4 due Friday
• If you have deliverables to demonstrate or would benefit from client

feedback, be sure to schedule a meeting

• In-class exam next Thursday
• Sample questions will be shared this week

• Multiple-choice, short-answer, diagraming

Lecture goals

• Leverage continuous integration to boost productivity by
"shifting left"

• Leverage dynamic analysis tools to find bugs

• Evaluate application performance

Continuous integration ("CI")

• Build and test whole systems regularly
• Discover issues earlier

• Reduce integration pain through automation and isolation of issues

• Test beyond single developer's resources

• Eliminate reliance on developers' discipline

• Continuously monitor readiness of code

• Applies to both development and release
• Continuous build+test

• Continuous delivery

CI decisions

• How to compose systems along release workflow

• Which tests to run when along release workflow

• Typical setup
• Pre-submit test suite gates all merges

• Compilation and fast tests relevant to affected code

• Post-submit test suite verifies subset of commits on trunk
• Contains larger, more integrated tests

• Blesses commits that pass as "green"

• Release promotion pipeline verifies candidates for release
• Contains even larger tests, may require dedicated resources

Automation, speed, & infrastructure

• Builds, tests, and deployment must be automated and reliable
• Ideally completely reproducible

• Most steps must be fast to avoid impeding productivity
• Cache build products
• Skip unaffected tests
• Parallelize & invest in compute resources

• Benefits from tooling
• Integration with version control and code review

• Pre-merge and pre-release gates
• "Last-known-good" branch (new work should branch from here, not trunk)

• Bisect breakages
• Log all results
• Automatically rerun flaky tests

Multi-system CI

• Without monorepo, need to assemble system from several
asynchronously-versioned repositories

• Large integration tests can't check every revision/combination

• Objective: identify "configurations" (revision combinations) suitable
for promotion (larger-scale testing, release)

Dynamic analysis

Common dynamic analysis tools

• Coverage

• Debuggers

• Memory checkers

• Sanitizers

• Profilers

Debugging demo

1. Witness test failure

2. Understand testcase

3. No crash? Check for memory
errors (valgrind)

4. Set breakpoint, run in
debugger, explore stack

5. Already borked? Break earlier
and try again, or use rr to run
backwards!

• bt: Show stack trace

• frame <n>: Change stack frame

• info locals: Show local vars
• info args: Show arguments

• p <expr>: Evaluate and print

• b: Set breakpoint

• c: Continue

• reverse-cont: Run in reverse

Fuzz testing

• Give program random input, look for crashes, assertion violations

• Increased in popularity in 2010s; very effective at finding security
vulnerabilities

• Can be enhanced with coverage feedback
• Use genetic algorithms, neural networks to construct input that exercises

particular branches

What is a performance bug?

Avoid premature optimization!

• Does not meet deadlines / satisfy SLA

• Responsiveness, smoothness do not meet requirements
• 100 ms: GUI
• 15-30 ms: Animation (30-60 fps)
• 10 ms: MIDI, VR

• Unexpected slowdown for certain inputs / DoS vulnerability

• Performance regression (gradual and acute degradation)

• Performance variability across platforms

• Sub-optimal throughput for HPC

Performance testing challenges

• How much room for improvement is there?
• Amdahl's law: Limits to speedup from parallelization, local optimization

• Roofline analysis: Do you expect to be limited by bandwidth or compute?

• Is slowdown localized, dispersed, or emergent?

• Getting reliable measurements is difficult
• Inconsistency, load dependency, JIT compilation, non-representative datasets,

intrusive tooling

• Average case vs. worst case, tail metrics

• Tension between latency and bandwidth

Latency vs. throughput

• Latency: Duration between a single trigger and the system's response
• "Tail latency" (e.g. 95th percentile under a specified load) is more important

than average

• Throughput: Time it takes to processes a fixed amount of work
• Often a function of workload

• Typically throughput increases with workload size up to a saturation point

• Reduce overhead with batching
• Typically at expense of latency

Poll: PollEv.com/cs5150

Consider adding new elements to a sorted list (initial size N) while
maintaining sorted order.

Scenario A: Elements are inserted into their proper position one at a
time.

Scenario B: All elements are appended to the list, then the whole list is
sorted (comparison sort).

Amdahl's Law

• Speedup: S = T_before / T_after

• Identify portion p of runtime cost amenable to optimization
• T_before = p*T + (1 - p)*T

• Let s be speedup of optimization on this portion
• Example: s = 10 for parallelizing on a 10-core machine

• Often interested in limit as s → ∞

• T_after = p*T/s + (1 - p)*T

• S(s) = 1/(1 - p + p/s)

• S → 1/(1 - p)

Amdahl's Law implications

CC BY-SA Daniels220 @ English Wikipedia

Poll: PollEv.com/cs5150

You use a text search application to look for all occurrences of a
keyword in all the files of a large source code repository.

Using a single core, half of the time is spent reading files and looking
for the keyword, and half the time is spent formatting and printing a

sorted summary of the results to the console.

What is the maximum speedup that could be achieved by distributing
the embarrassingly parallel work across multiple cores/nodes?

