
Lecture 19:
Dynamic
analysis &
testing II

CS 2110, Spring 2022

Administrative announcements

• Report #4
• User testing plan & first-round results

• Test health report
• Analyze line coverage of host application test suite

• Test plan
• What styles of tests will cover your changes?

• If manual, include in schedule

• Assume small, automated tests can be run in continuous integration

• Test preparation after spring break

Lecture goals

• Write reliable, maintainable tests of various styles, scopes, and sizes

• Employ test doubles without increasing brittleness

• Leverage continuous integration to boost productivity by "shifting
left"

• Leverage dynamic analysis tools to find bugs

Kinds of testing

• Styles
• Exploratory (manual)
• Smoke tests
• Black box
• Glass box
• Fuzz testing
• Dynamic analysis

• Scopes
• Unit tests
• Integration tests
• End-to-end tests

• Sizes
• Small: fast, deterministic (in-

process)
• Medium: multi-process, allow

blocking calls (single machine)
• Large: Multi-node

• Purpose
• Prevent reoccurrence of bugs

(regression tests)
• Prepare for release (acceptance

tests, beta testing)
• Ensure operating health (self tests)

Can synthesize with
boundary value analysis,
coverage feedback

Flaky vs. brittle tests

Flaky

• Non-deterministic failures
• Multi-process/multi-node

infrastructure failures

• Performance/timeouts

• Randomness
• Always log seed

• Concurrency
• Difficult to reproduce

• Time of day

Brittle

• "High maintenance"
• Leverage private functionality

• Depend on private state

• Assume behavior beyond the spec
• e.g. checking interactions instead of

state

• Coming up: guidelines to avoid
brittle tests

Aside: random numbers

• In most settings, random numbers should be deterministic
• Enables reproducibility, reduces test flakiness
• Exceptions (in production): cryptography, gambling

• Recommended approach
• Application starts with a specified global seed (and logs it)
• Each component constructs a private RNG by combining global seed with unique

instance name
• Alternative for parallel computation: sequence queries, use RNG that can "fast

forward" state

• Advantages
• Results independent of amount of parallelism
• Results do not change if "peripheral" components are added or removed

Test scope

Small scope
• Limited coverage (per test)

• But coverage is orthogonal

• May require awkward setup (dependency
injection, mock objects)

• Can be written simultaneously with the code-
under-test

• Easy to diagnose
• Limited amount of code is executed
• Easier to understand procedure and results

• Typically faster
• Can run more often

Large scope
• Extensive coverage (per test)

• Much coverage is redundant
• Most results are not checked (false sense of

security)

• May be easier to set up than mid-scoped tests
• But total configuration harder to reason about

• Depends on whole system
• Bugs may not be found until later

• Difficult to diagnose
• Slows down debugging when bugs are found

• Typically slower

Exploratory testing

• Applications
• Developers check how existing code

behaves
• Developers "gut check" new code
• Demonstrate functionality in a

scenario of interest with complicated
setup

• QA testing (test behaviors developers
often overlook)

• Tools
• Application itself
• REPL (JShell, iPython)
• Dynamic analysis tools (callgrind)

• Drawbacks
• Not reproducible

• Results may depend on unique context
• Good habit to log all interactions

• Good to think about expectations
before running test, but if you can
express what you expect, just write a
unit test

• Quality varies with tester
• Can't measure coverage

• Appropriate for one-off scripts

Unit tests

• Narrow scope (typically a single
function or a single class)

• Focus on publicly-visible, fully-
specified behavior
• Check state, not process

• Write for clarity
• Okay to be repetitive
• Avoid new abstractions or logic

• Bad example:
• When registering a new user, the

system first generates a password,
then tries to insert a new auth table
row, throwing an exception if
insertion failed (name already taken)

• Better example:
• After registering a new user whose

name is not taken, a new row will
exist in the database with their
username and password

• If attempting to register a new user
whose name is already taken, an
exception is thrown

Behavior-driven development

• Structuring tests around
methods can make them brittle,
hard to read
• Try to test too many behaviors at

once

• Better to structure tests around
scenarios

• Arrange-act-assert format
• "Given …, when …, then …"
• Analogous to User Stories

preamble

• "Given two accounts, the first of
which has at least $100,
when transferring $100 from the
first to the second account,
then both account balances
should reflect the transfer"

• Test frameworks can help make
tests self-documenting

• Consider writing tests
before implementing features

BDD example

info("As a TV set owner")

info("I want to be able to turn the TV on and off")

info("So I can watch TV when I want")

info("And save energy when I'm not watching TV")

Feature("TV power button") {

Scenario("User presses power button when TV is
off") {

Given("a TV set that is switched off")

val tv = new TVSet

assert(!tv.isOn)

When("the power button is pressed")

tv.pressPowerButton()

Then("the TV should switch on")

assert(tv.isOn)

}

Scenario("User presses power button when TV is on")
{

Given("a TV set that is switched on")

val tv = new TVSet

tv.pressPowerButton()

assert(tv.isOn)

When("the power button is pressed")

tv.pressPowerButton()

Then("the TV should switch off")

assert(!tv.isOn)

}

}

https://www.scalatest.org/at_a_glance/FeatureSpec

BDD example output

A Stack

- should pop values in last-in-first-out order

- should throw NoSuchElementException if an empty stack
is popped

Run completed in 76 milliseconds.

Total number of tests run: 2

Suites: completed 1, aborted 0

Tests: succeeded 2, failed 0, canceled 0, ignored 0,
pending 0

All tests passed.

https://www.scalatest.org/

Test doubles

• How to write unit-scoped tests
with complex dependencies?
• Using external services makes tests

"larger"
• Depending on specialty hardware is

very constraining

• Can be difficult to get complex
objects into appropriate state

• Can be difficult to trigger a corner-
case response (e.g. I/O errors)

• Options
• Use real dependencies

anyway (highest fidelity and
coverage)

• Use fakes & simulators (good
option; requires investment)

• Use stubbing/mocks (convenient,
but dangerous)
• Beware temptation of

interaction testing

• Design for testing
• Dependency injection: pass in

dependencies instead of using
Singletons or constructing your own

Stubbing and mocking frameworks

• Create subclasses of
dependencies whose methods
return values specified by the
test
• Frameworks like Mockito make

this easy, even with static types

• Enables interaction testing
• Checking whether code-under-test

calls methods on dependencies in
the way we expect

Example:

var userAuth = new UserAuthorizer(
mockPermissionDb);

when(mockPermissionDb.getPermission(
user1, ACCESS)).thenReturn(EMPTY);

UserAuth.grantPermission(ACCESS);

verify(mockPermissionDb).addPermission(
user1, ACCESS);

Dangers of stubbing & interaction testing

• Increases brittleness
• When refactoring the real

dependency, must also change
everyone's stubs

• Reduced fidelity

• Decreases clarity
• Pollutes tests for one class with a

different class's API

• Depends on implementation
details rather than on
observable state
• May be appropriate to test for

"side effects"

Integration tests

• Broader scope
• Check that multiple components

interface correctly

• Check behavior of subsystems

• Tend to be larger in size
• SoA requires multiple processes

• Non-trivial data, config can be
slow

• Aim for smallest test possible
• Split pipelines into pairwise

interactions

• Larger tests require non-trivial
infrastructure, can be flaky
• Fakes

• Lightweight substitutions
• In-memory databases

• Hermetic services
• Leverage virtualization to deploy

isolated instances of service
dependencies

• Record/replay I/O
• Trades flakiness for brittleness

Integration environments

• Production
• Highest fidelity, esp. for load

• Failures affect real users

• Canarying: deploy to subset of
production systems
• E.g. internal users, early access

• Can lead to version skew –
incompatibility between
concurrently-running components

• Feature flags: Allow operators to
quickly toggle between new and
old implementation

• Staging
• Ideally configured just like

production

• Potentially high infrastructure
cost, limited availability

• Often can't duplicate production
load

• Failures do not harm users

• Can practice disaster recovery

Chaos engineering

• Originated at Netflix
(ChaosMonkey)

• High-reliability, distributed
systems must tolerate failure

• Recovery procedures are often
not sufficiently rehearsed –
painful, risky

• Deliberately inject failures in
production environment
• Tests system resiliency under

realistic load

• Encourages recovery automation

Continuous integration ("CI")

• Build and test whole systems regularly
• Discover issues earlier

• Reduce integration pain through automation and isolation of issues

• Test beyond single developer's resources

• Eliminate reliance on developers' discipline

• Continuously monitor readiness of code

• Applies to both development and release
• Continuous build+test

• Continuous delivery

CI decisions

• How to compose systems along release workflow

• Which tests to run when along release workflow

• Typical setup
• Pre-submit test suite gates all merges

• Compilation and fast tests relevant to affected code

• Post-submit test suite verifies subset of commits on trunk
• Contains larger, more integrated tests

• Blesses commits that pass as "green"

• Release promotion pipeline verifies candidates for release
• Contains even larger tests, may require dedicated resources

