
Lecture 18:
Dynamic 
analysis and 
testing I

CS 5150, Spring 2022



Administrative announcements

• Final presentation scheduling is happening now

• Feedback on Report #3 to be released at end of week
• If you have not produced some working code by this point, you are likely 

behind

• Peer evaluations due this evening
• Summary scores will be posted Thursday

• Next week is spring break
• No client meetings

• Report #4
• Required sections related to testing (details Thursday)



Lecture goals

• Justify uniformity of coding conventions and style

• Advocate for portability

• Write reliable, maintainable tests of various styles, scopes, and sizes

• Leverage dynamic analysis tools to find bugs



Style guides



Activity

• Brainstorm advantages of uniform style, universal rules

• Any disadvantages?



Style automation

Advantages

• Zero human effort

• Uniform enforcement

• Prevent accidentally misleading 
style

• Can be applied after 
refactoring, synthesizing code

• Can update entire codebase 
when style rules change

Disadvantages

• Can't reproduce all reasonable 
style rules

• Special-case exceptions are 
awkward

• Reformatting pollutes blame 
history



Style guide examples

• Google: C++

• MISRA C/C++

• Google: Java

• Google: Python

• Don't blindly adopt someone 
else's style guide – some 
justifications may not apply 
externally
• But good to inherit from

• Elements of good style guides
• Justify choices

• Avoid danger
• Enforce best practice
• Ensure consistency

• Avoid details that can be 
automated

• Get developer buy-in

https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/javaguide.html
https://google.github.io/styleguide/pyguide.html


Portability

• Advantages
• Enlarges customer base

• Futureproofing
• e.g. Apple Silicon

• Reduces implicit assumptions

• Improves process robustness

• Expands tooling options
• Compilers

• Analysis tools

• Educates team

• Anecdote: Every time I build a 
project with a new compiler, I 
discover bugs
• Sometimes those bugs are in the 

compiler... but most are in the 
application

• Drawbacks
• Maintenance burden



Portability targets

• Architecture
• x86, ARM, 32 vs. 64-bit

• Operating system
• Linux (Red Hat, Debian), Windows, 

Mac OS
• Android, iOS

• Form factor
• Smatphone, tablet, laptop, 

desktop, dual monitors

• Web browser
• Chrome, Safari, Firefox

• C/C++ compilers
• GCC, Clang, MSVC, Intel, Solaris 

Studio, IBM XL, PGI, 
SGI/Open64/PathScale

• Java virtual machines
• Oracle/OpenJDK, IBM/OpenJ9, 

Azul

• Python interpreters
• CPython, PyPy, Jython



Poll: PollEv.com/cs5150



Techniques to improve portability

• Heterogeneous developer 
environments

• Automated cross-platform builds 
and tests
• Cloud infrastructure available
• Don't ignore errors

• Highlight in style guides, code 
review checklists

• Use cross-platform standards and 
abstraction layers
• Avoid writing your own #ifdefs 

unless portability is a business case

• Common gotchas:
• Integer sizes
• Filesystems
• Unsupported APIs, language features
• Floating-point behavior
• Performance characteristics
• Assumptions about unspecified 

behavior
• Hyrum's Law



Testing



Goals of testing

• Find and prevent bugs

• Improve maintainability (esp. refactoring)

• Clarify intended usage

• To meet these goals, tests themselves should be:
• Bug-free

• Maintainable

• Clearly documented and easy to read



Test coverage

• Ways to measure "how much 
code" was tested
• Function coverage
• Statement (line) coverage
• Branch coverage
• Condition/decision coverage
• Loop coverage
• Path coverage
• …

• Coverage analysis can reveal 
gaps in testing

• Example:
if (a>b && c!=25) { d++; }

• Required cases for 
condition/decision coverage:
• a<=b
• a>b && c==25
• a>b && c!=25



Poll: PollEv.com/cs5150

double[] boxFilter(double[] x) {
var y = new double[x.length];
for (int i = 0; i < x.length; ++i) {
var xl = x[i]; var xr = x[i];
if (i > 0) { xl = x[i-1]; }
if (i < x.length-1) { xr = x[i+1]; }
y[i] = (xl + x[i] + xr)/3.0;

}
return y;

}



Coverage targets

• Any statement not covered by a test is code you expect 
your client/users to run before you do

• By this philosophy, 100% line coverage would be a minimum target
• But chasing coverage metrics with low-quality tests can be self-defeating

• Tests take time to write, review, and run; must consider cost/benefit ratio



Activity: Brainstorm difficult testing scenarios



Difficult testing scenarios

• Error codes & exceptions from 
library and system calls
• Out of memory
• Out of disk space
• Incomplete I/O
• Transient I/O error (EAGAIN)
• Timeouts

• Unbounded blocking
• Crash/power loss

• Corrupted data

• Malicious intent

• Concurrency
• High lock contention
• Race conditions
• Caching & memory ordering
• True concurrency vs. multitasking

• Portability
• Unsupported capabilities
• Platform differences

• Performance
• NUMA
• Big.LITTLE
• Disk I/O (bandwidth, latency)
• Network I/O (bandwidth, latency)



Beyoncé rule

• "If you liked it, then you shoulda put a test on it"

• Manages responsibility during large-scale refactoring
• Infrastructure team must ensure all tests pass before committing

• If functionality breaks, product team must fix it (and add more tests)

• Aim for sufficient coverage so that you (and your teammates) would 
be okay being held responsible for a production breakage in 
uncovered code



Example: SQLite

• 640x more test code than 
application code

• 100% branch test coverage

• OOM, I/O errors, crashes
• Use abstractions to wrap malloc, 

I/O operations

• Boundary values

• Regression tests

• Valgrind

• Fuzz testing

• https://www.sqlite.org/testing.html

https://www.sqlite.org/testing.html


Kinds of testing

• Styles
• Exploratory
• Smoke tests
• Black box
• Glass box
• Fuzz testing
• Dynamic analysis

• Scopes
• Unit tests
• Integration tests
• End-to-end tests

• Sizes
• Small: fast, deterministic (in-

process)
• Medium: multi-process, allow 

blocking calls (single machine)
• Large: Multi-node

• Purpose
• Prevent reoccurrence of bugs 

(regression tests)
• Prepare for release (acceptance 

tests, beta testing)
• Ensure operating health (self tests)

Can synthesize with 
boundary value analysis, 
coverage feedback



Example: aerospace testing

• Unit tests
• Ensure thorough coverage
• Verify independent implementations

• Smoke tests
• Small-scale integration test
• Ensure configs are valid

• Regression tests
• Catch any change to behavior (ensure 

refactoring changes are non-functional)
• Ensure control algorithms achieve 

mission objectives

• Checkpoint/restore tests

• Exploratory tests
• Logged data posted to reviews

• Software-in-the-loop
• Medium-scale integration test
• Leverage virtualization, preloading, 

hardware simulation
• Subsystem and end-to-end scope

• Hardware-in-the-loop
• Large-scale integration test
• Verify non-functional requirements

• Vehicle-in-the-loop
• Large-scale integration test
• Verify a particular "production unit"

• Formal test deliverables


