
Lecture 15:
Midpoint

CS 5150, Spring 2022

Midpoint snapshot

• After lecture, grade summaries will be posted to CMS
• As usual, do not try to interpret as a "percentage grade"

• Rubrics in assignment descriptions (also summarized on Canvas)

• Assessments so far:
• Polling participation

• Assignments 1-3 + peer evals submission

• Peer evals feedback

• Project reports 1 & 2

Grading breakdown

Project components:
• Reports

• Presentations

• Code & process quality

• Meeting etiquette / client
feedback

• Peer evaluations

80%

10%

7%
3%

Project

Exam

Assignments

Participation

(subject to change by up to 5%)

Rubric interpretations

• Participation
• 3: On track for full credit

• 2: Trending below full credit

• 1: Below expectations

• 0: No record of any participation

• Peer evaluation submission
• 2: Followed directions

• 1: Did not follow directions;
manual cleanup required
• Title lines

• Numbers for comments

• Excel instead of CSV

• 0: No submission

• Tip: self-verify your submissions

Rubric interpretations: Peer feedback

• Peer feedback can shift your
project grade
• Relative, not absolute
• By definition, most students earn a 3

• Giving everyone maximum scores gives
everyone a "3"

• Still have three more sessions over
which to improve contributions

• 4: Peers have recognized your
standout contributions
• May receive minor grade boost

• 3: Meeting team expectations
• Will inherit overall project grade

• 2: Peers have identified room for
improvement
• May receive minor grade penalty

• 1: Peers have some major concerns
• If unaddressed, penalty depends on

specific concerns

Retrospectives

• How to improve based on team
feedback? Share it!
• Hold a "retrospective" or "post-

mortem" after major deliverables
• Reports, presentations

• Need structure
• Team improvement won't just

happen on its own

• Appoint a facilitator, have an
agenda

• General tips
• Don't make things personal, don't

take things personally
• Focus on specific actions/non-

actions and their consequences

• Focus on concrete steps for
improvement
• Don't dwell on blame

• Be open, honest, and human
• But stay calm, avoid getting

defensive

• Embrace sticky notes, timers

Retrospective outline

1. How are you feeling about the
project today?

2. Individual reflection
1. What went well? / What team

accomplishment are you most proud
of?

2. What did not go well? / Where did the
team fall short of its potential?

3. What would you like to see improved?

3. Share and organize

4. Brainstorm: How could we
improve?

5. Decide on actions

• Everyone participates

• Facilitator times reflection,
brainstorming; calls on each member
in turn

Poll: What is an appropriate way to address an
individual's shortcomings in a retrospective?

A. "Alice, when you arrive late to meetings, the team loses productive
time waiting for you, or else we risk rework because you missed
important information. It put our last milestone at risk, and it
lowers my impression of your contributions. Do you see where I'm
coming from?"

B. "Bob, you're simply bad at writing Java. You clearly can't learn it
fast enough, so just leave the coding to us."

C. "Chris, your UI designs are great. It'd be nice if you came to our
planning meetings, though. But we appreciate your proofreading
too."

D. Do nothing and hope the problem solves itself.

PollEv.com/cs5150

Web application frameworks

Django

• Architectural styles
• Client-server separation

• Three-tier architecture

• Model-View-Template
• "View" is analogous to "Controller"

• "Template" is analogous to "View"

• Model
• Object-Relational Mapper (ORM)

• View (aka "Template")
• Templates

• Controller (aka "View")
• Routes configuration

• "View functions" that interpret
a request, perform business logic
on model data, and construct
a response

Objects vs. Relational databases

Objects

• Encapsulate data in fields,
expose behavior via methods

• Form a graph by referencing
other objects

• Support inheritance and
polymorphism

Relational databases

• Store data in rows of tables with
fixed-type columns

"Object-relational impedance mismatch"

Entity-relation model

• Can be used for requirements modeling

• Can be used for database design

Example

Example representations

Objects

class Student {
String major;
Project project;

}

class Project {
Stakeholder client;
List<Stakeholder> contacts;

}

class Stakeholder {}

Database tables

TABLE Students (
id, major, projectId);

TABLE Projects (
id, clientId);

TABLE Stakeholders (id);

TABLE Contacts (
projectId, contactId);

Example: Web craw data

Poll: PollEv.com/cs5150

A B

C D

Demo: database exploration

Django ORM

from django.db import models

class Person(models.Model):

first_name =
models.CharField(max_length=30)

last_name =
models.CharField(max_length=30)

CREATE TABLE myapp_person (

"id" serial NOT NULL PRIMARY KEY,

"first_name" varchar(30) NOT NULL,

"last_name" varchar(30) NOT NULL

);

CRUD

SQL HTTP

Create INSERT PUT

Read SELECT GET

Update UPDATE PUT

Delete DELETE DELETE

Using introspection, many frameworks can dynamically generate graphical
interfaces for managing application-specific persistent data

Django CRUD

• Create: create(), save()

• Read: get()

• Update: save(), add()

• Delete: delete()

from blog.models import Entry,
Author

entry = Entry.objects.get(pk=1)

entry.title = "Hello"

entry.save()

joe = Author.objects.create(
name="Joe")

entry.authors.add(joe)

Django "views" (Controller)

• Routes (url.py)
from django.urls import path

from . import views

urlpatterns = [

path('articles/2003/', views.special_case_2003),

path('articles/<int:year>/', views.year_archive),

path('articles/<int:year>/<int:month>/', views.month_archive),

path('articles/<int:year>/<int:month>/<slug:slug>/',
views.article_detail),

]

Django "views" (Controller)

def index(request):

latest_question_list = Question.objects.order_by('-
pub_date')[:5]

template = loader.get_template('polls/index.html')

context = {

'latest_question_list': latest_question_list,

}

return HttpResponse(template.render(context,
request))

Django templates

{% if latest_question_list %}

{% for question in latest_question_list %}

{{
question.question_text }}

{% endfor %}

{% else %}

<p>No polls are available.</p>

{% endif %}

Logging

• Advantages over printing
• Flexibility in output destination

• Filtering (by severity, source component)

• Automatic metadata (timestamp, line number)

• Structured formats

• Efficiency

•For global configuration, use Singleton pattern
• import logging

• logger = logging.getLogger(__name__)

