
Lecture 14:
User testing,
code tracing

CS 5150, Spring 2022

Logistics

• Schedule presentation with client/course staff

• Plan for user testing (report #4)

Lecture goals

• Improve future project progress and reporting

• Design interfaces within the constraints of web browsers and
mobile devices

• Evaluate UI designs with user testing

Report #2 feedback

General comments

• Be proactive in eliciting
requirements, evaluating designs

• Keep requirements verifiable
• Under what conditions should

the client accept that they have
been met?

• Clarify functional requirements
with scenarios, screenshots/
mock-ups

• Use standard UML symbols
appropriately
• Actors

• Nodes

• Interfaces

• Identify components by looking
for protocols

• Identify deployment
environments

Examples

• CUPD
• User story preambles

• Stakeholder interviews

• Design mock-up screenshots

• Project schedule

• CMSX
• User stories

• Deployment and component
diagrams

• Inline edits
• Use cases

• Deployment and
component diagrams

Web and mobile interfaces
… continued from Lecture 13

Responsive design

Tablet Smartphone

Flexible grids

• Divide screen into columns

• Declare how many columns each
element occupies at each
breakpoint
• Use more columns for narrower

screens

• Example: Bootstrap

Aside: semantic markup
• Many attempts to make content,

style separate concerns
• HTML+CSS, LaTeX, DocBook XML,

Content Management Systems

• Allows content to be delivered in
multiple media (web, print, ebooks)

• Tension with designing around
content
• Separating tightly-coupled info is

more work, hard to maintain

• Style rules tend to leak into content

https://getbootstrap.com/docs/5.1/layout/grid/

Progressive enhancement

• Beware the fancy
• Modern browsers are "evergreen" - they keep themselves up-to-date and

support many of the latest web standards

• But compatibility is still a concern
• Support for standards is uneven (e.g. Edge vs. CMSX)

• Mobile devices often stop receiving updates

• User preferences, browser extensions, firewalls make browsers heterogeneous

• Progressive enhancement
• Leverage fancier features to improve UX, but ensure that core functions are

still available without them

• Use fallbacks, polyfills to maximize compatibility

Poll: Progressive enhancement

PollEv.com/cs5150

Evaluation and user testing

Analyze/design/build/evaluate loop

Evaluation

• Design and evaluation should be done by different people

• Schedule must include time to conduct tests and make changes

• Evaluation should be ongoing
• Iterative refinements during development
• Quality assurance before deployment
• Improvements after launch

• Methods of evaluation
• Empirical (user testing)
• Quantitative (measurements on operational systems)
• Analytical (sans users; not in CS 5150)

Standards for usability: ISO 9241:11

• Effectiveness
• The accuracy and completeness with which users achieve certain goals

• Measures: quality of solution, error rates

• Efficiency
• The relationship between the effectiveness and the resources expended in

achieving them

• Measures: task completion time, learning time, number of clicks

• Satisfaction
• The users' comfort with and positive attitudes towards the use of the system

• Measures: attitude rating scales

Poll: Measuring usability

PollEv.com/cs5150

User testing stages

 re re

 onduct e ion

 n e re u t

• User testing is time-consuming,
expensive, and critical

Preparation

• Determine goals of usability testing
• "Can a user find the required information in no more than two minutes?"

• Write the user tasks
• "Given a new customer application form, add a new customer to the customer

database"

• Recruit participants
• Use the descriptions of users from the requirements phase to determine

categories of potential users and user tasks

Participants

• Don't need many (per feature)
• Diminishing returns after 5-6 users

• Look for diversity (age, experience,
ability)

• Combine structured tests with
free-form interviews

• Have at least two evaluators per
test
• Should not include designers

• Advice: it's not a race!
• Example: user testing for arXiv

Conducting sessions

• Environment
• Informal

• Simulated work environment

• Usability lab

• Give the user their task

• Observe the user
• Human observer(s)

• Recording (with permission)

• Query satisfaction

Analyzing results

• Test the system, not the users
• Respect the data and the user's

responses
• Do not make excuses for designs

that failed
• If possible, use statistical

summaries

• Pay close attention to instances
where users:
• Were frustrated
• Took a long time
• Could not complete tasks

• Also note aspects of the design
that did work
• Ensures they are maintained / do

not regress in final product

Example: Past CS 5150 methodology

How we're user testing:

• One-on-one, 30-45 min user tests with staff levels

• Specific tasks to complete

• No prior demonstration or training

• Pre-planned questions designed to stimulate feedback

• Emphasis on testing system, not the stakeholder!

• Standardized tasks / questions among all testers

Example

Types of questions we asked:

• Which labels, keywords were confusing?

• What was the hardest task?

• What did you like, that should not be changed?

• If you were us, what would you change?

• How does this system compare to your paper based system

• How useful do you find the new report layout? (admin)

• Do you have any other comments or questions about the system?
(open ended)

What we've found:
Issue #1, Search Form Confusion!

What we've found:
Issue #2, Inconspicuous Edit/Confirmations!

What we've found:
Issue #3, Confirmation Terms

What we've found:
Issue #4, Entry Semantics

What we've found: Issue #5,
Search Results Disambiguation & Semantics

Measurement-based evaluations

• User testing can be done with
(non-functional) prototypes
• Requires more interaction with

evaluator (risk of bias)

• Measurements require an
operational system

• Log events in users' interactions
with system
• Clicks (when, where)
• Navigation (from page to page)
• Keystrokes
• Use of help system
• Errors encountered
• Eye tracking

• May be used for statistical
analysis or for detailed study of
an individual user

Eye tracking

Analyzing measurements

• Which interface options were
used?

• When was the help system
consulted?

• What errors occurred? From
where and how often?

• Which links were followed?
(clickthrough data)

• Human feedback (less
structured)
• Complaints and praise in feedback

forms

• Bug reports

• Calls to customer service

Refining designs

• Do not allow test evaluators to become designers
• Designers are poor evaluators of their own work,

• But designers know requirements, constraints, context of design
• Know which problems might be addressed with small changes

• Know which problems require major changes that should be escalated

• Know which user requests are mutually incompatible
• Balance between configurability and simplicity (designer's job)

• Designers and evaluators must work as a team
• But not try to do each other's work

User testing in CS 5150

• All projects must conduct user testing of user interfaces you design
• Internal projects: recruit classmates from other teams

• Decide how much training users should have
• They should probably be familiar with existing system

• You can provide training (but don't "teach to the test"), or a user manual

• Design tasks & metrics
• "Which files has your reviewer read so far?"

• "Which, if any, of your commit messages has your reviewer left a comment on?"

• "Add a reviewer comment to this file that was not modified"

• Design survey

Code tracing

Techniques

• Monitor application logs

• Developer tools network view
• Look for mutating methods (POST, PUT, DELETE, vs. GET); ignore static

resources

• Look at initiator stack trace
• Ignore framework methods (jQuery, etc.)

• Look for promising files, then read them

• Search source code
• Filter results (ignore static, tests, docs)

