
CS 5142 Cornell University
12/02/13

1

CSCI-GA.3033.003
Scripting Languages

12/02/2013
OCaml

CS 5142 Cornell University
12/02/13

2

The material on these slides is based on notes provided by
Dexter Kozen.

Acknowledgement

CS 5142 Cornell University
12/02/13

3

About OCaml
•  A functional programming language

–  All computation is done with functions
–  No state (mutable variables), simple and clean
–  Functions are first class: you can pass them, return

them, etc.
–  Support for object-oriented programming (the O in

OCaml)
•  Statically typed, type-safe language

–  You can’t apply the wrong operations to the wrong data
(e.g., can’t try to divide two strings)

–  Avoids many “silly errors” and provides security (e.g.,
no buffer overflows)

OCaml

CS 5142 Cornell University
12/02/13

4

Ocaml Features
•  Garbage collection: automatic memory management
•  Type inference: You don’t have to write the type

information down. The compiler will figure it out.
•  Parametric polymorphism: Write functions and data

structures that can be used with any type. Note that Java
provides subtype polymorphism.

•  Algebraic data types: Can build data structures easily.
Pattern matching makes working with them convenient.

•  Advanced modules: Encapsulate implementations
behind interfaces. Functors (functions that manipulate
modules) add functionality beyond most languages’
module systems.

OCaml

CS 5142 Cornell University
12/02/13

5

Weak/Strong, Static/Dynamic Typing
Concepts

ML
Java

JavaScript
PHP

Scheme

Perl
assembler

C

Static typing
(compile-time checks)

Strong typing
(explicit conversions)

Weak typing
(implicit conversions)

Dynamic typing
(runtime checks)

VBA

CS 5142 Cornell University
12/02/13

6

History
•  Robin Milner and others at the University of

Edinburgh were working on theorem provers
•  Problem: the provers would sometimes put incorrect

“proofs” together, and claim they were valid
•  Designed ML (Meta Language) as a language to let

you construct valid proofs
•  In the early ‘80s, there was a schism in the ML

community
–  French developed Caml and later Objective Caml

(OCaml)
–  British and Americans developed Standard ML

(SML)

OCaml

CS 5142 Cornell University
12/02/13

7

•  ocaml
•  REPL

•  ocaml file.ml

•  Run the interpreter

•  ocamlc file.ml; ./a.out
•  Run the compiler

OCaml

How to Write + Run Code

CS 5142 Cornell University
12/02/13

8

Types
OCaml

primitive

int float bool string

constructed

lists tuples functions char unit

CS 5142 Cornell University
12/02/13

9

Type Inference

•  The compiler deduces the type of an expression
y = x + 1
•  Compiler knows that + takes two integers and returns

an integer, so x and y should be integers.
z = x + 1.0
•  This should produce an error, since x is being used

as both an int and a float
•  Compiler infers types by aggregating type

information, and reducing expressions to implicitly
typed values

OCaml

CS 5142 Cornell University
12/02/13

10

Type Inference

•  Statically determining whether a program will have a
type-error is impossible

•  All statically typed languages are conservative, and
may reject some programs that are perfectly okay

•  Milner formulated the type-inference system for ML,
and proved its soundness

•  Note that Milner also worked on concurrent
programming languages (CCS, CSP, pi-Calculus),
and won the Touring award – in large part to his work
on ML

OCaml

CS 5142 Cornell University
12/02/13

11

Syntax (subset)
OCaml

Syntactic class Grammar rule Example
identifiers x,f a, x,y,x_y, z100….
constants c 1, 01, 1.0, true, “hello”

‘A’
unary operator u -, not
binary operator b +,*,-, <,>, ^, !=,…
terms e::= x | c | u e | e b e| if

e then e else e | let d
and … d in e | e (e,
…,e)

not b, 2 + 2, foo

declarations t ::= x = e | f (x,…,x) : t
= e

one = 1

CS 5142 Cornell University
12/02/13

12

Program Errors

•  An expression can have a legal syntax, but may be
wrong. The expression must be well-typed.

•  Ways that a program can be wrong:
–  Syntax errors: let 0 x =
–  Type errors: “x” + 3
–  Semantic errors: 1/0
–  More general errors: computes the wrong output

OCaml

CS 5142 Cornell University
12/02/13

13

Example
let abs (x : int) : int =
 if x < 0 then -x else x

let abs : int -> int =
 function x -> if x < 0 then -x else x

let abs = fun x -> if x < 0 then -x else x

val abs : int -> int = <fun>

•  Every expression and declaration has both a type and a value.
•  Here, we have bound the name abs to a function whose type is

int -> int.

OCaml

Type Checking
$ ocaml
let abs = fun x -> if x < 0 then -x else x ;;
val abs : int -> int = <fun>

abs 3;;
- : int = 3

abs "foo";;
Error: This expression has type string but an expression was
expected of type
 int

CS 5142 Cornell University
12/02/13

14

OCaml

CS 5142 Cornell University
12/02/13

15

Scope

•  Variable declarations bind variables within a scope

let x = e1 in e2

•  The scope of x is the expression e2.
•  Functions also bind variables

let f x = e1 in e2

The scope of the formal parameter x is the expression in e1. The
scope of the variable f (which is bound to a function value) is the
body of the let, e2.

OCaml

CS 5142 Cornell University
12/02/13

16

Scope

•  A let expression can introduce multiple variables

let x = 2 and y = 3 in x + y

•  To declare a recursive function, the function must be in scope in

its own body. In Ocaml, you use let rec instead of let for this.

let rec even x = x = 0 || odd (x-1)
 and odd x = not (x = 0 || not (even (x-1)))
in
 odd 3110

OCaml

CS 5142 Cornell University
12/02/13

17

Curried functions

•  A function with multiple parameters is really just syntactic sugar for a

function passed a tuple as an argument

let plus (x, y) = x + y;;
val plus : int * int -> int = <fun>
plus (2, 3)

•  Ocaml has another way to declare functions with multiple arguments. In

curried form:

let plus x y = x + y

•  Notice there are no commas between the parameters

OCaml

CS 5142 Cornell University
12/02/13

18

Curried functions

•  There are also no commas when calling the function:

plus 2 3

•  Functions really only have one argument. The plus function is being

passed one argument, 2, and it returns a function that takes one
argument. (plus 2) (3)

plus 2 3
= ((function (x : int) -> function (y : int) -> x + y) 2) 3
= (function (y : int) -> 2 + y) 3
= 2 + 3
= 5

OCaml

CS 5142 Cornell University
12/02/13

19

Lists

•  Lists are immutable. You cannot change the
elements of a list.

•  Lists are homogenous. The can only contain one
type.

•  Examples: [1;2;3], 1::[2;3], [1;2]@[3;4]

OCaml

CS 5142 Cornell University
12/02/13

20

Pattern Matching
•  Use match expressions to extract elements from a list

match lst with
 | [] -> 0
 | [x] -> 1
 | _ -> 2

•  Returns 0 if the list is empty, 1 if the list has 1

element, and 2 if it has 2 or more elements

OCaml

CS 5142 Cornell University
12/02/13

21

Pattern Matching
•  Use recursive functions to do something to every

element in a list

let rec length (lst : string list) : int =
 match lst with
 [] -> 0
 | h :: t -> 1 + length t

•  This function computes the length of the list lst.

OCaml

CS 5142 Cornell University
12/02/13

22

Variant Types
•  Allows you to have variables that contain more than

one kind of value
•  Similar to an enum in java, or a tagged union in C

type answer = Yes | No | Maybe;;

•  Type keyword declared name for the type.
•  Declared with a set of constructors

type eitherPoint = TwoD of float * float
 | ThreeD of float * float * float

OCaml

CS 5142 Cornell University
12/02/13

23

Pattern Matching
•  Ocaml patterns are very rich
•  Can match on variant types, tuples, records, and can

pull the values apart

let answer_to_string (a : answer) : string =
 match a with
 | Yes -> “yes”
 | No -> “no”

OCaml

CS 5142 Cornell University
12/02/13

24

Polymorphism
•  Suppose we want to write a function that swaps

positions of a pair:

let swapInt ((x : int), (y : int)) : int * int = (y, x)
and swapReal ((x : float), (y : float)) : float * float = (y, x)
and swapString ((x : string), (y : string)) : string * string = (y, x)

•  Better way:
 let swap ((x : 'a), (y : 'b)) : 'b * 'a = (y, x);;

•  Or without type declarations:
let swap (x, y) = (y, x);;
val swap : 'a * 'b -> 'b * 'a = <fun>

OCaml

CS 5142 Cornell University
12/02/13

25

Mapping
•  Apply a function to every element in a list, and return

a new list:

List.map f [a; b; c] = [f a; f b; f c]

•  Copy a list (using an anonymous function)

let copy = map (fun x -> x)

OCaml

CS 5142 Cornell University
12/02/13

26

Folding
•  Apply a function to every element in a list,

accumulates a result:

fold_right f [a; b; c] r = f a (f b (f c r))
fold_left f r [a; b; c] = f (f (f r a) b) c

•  Sum all the elements in a list:

let sum_right_to_left il = fold_right (+) il 0
let sum_left_to_right = fold_left (+) 0

OCaml

CS 5142 Cornell University
12/02/13

27

Folding
•  Fold is very powerful!
•  Can write many other list functions in terms of fold

type intlist = Nil | Cons of (int * intlist)
let mapp f lst = fold_right (fun x y -> Cons (f x, y)) lst Nil

•  Note that fold_left would give the result in reverse order

let length = fold_left (fun x _ -> 1 + x) 0

•  Select a subset of the list

let filter f lst =
 fold_right (fun x y -> if f x then Cons (x, y) else y) lst Nil

OCaml

CS 5142 Cornell University
12/02/13

28

Last Slide
•  Next lecture: Review!

Administrative

