
λ

Security for
Web Languages

Marco Pistoia, Ph.D.
Manager, Research Staff Member

IBM T. J. Watson Research Center

New York University
July 19, 2012

λ

July 19, 2012 Marco Pistoia, IBM Research 2

Computer Security

  Hardware, software, and network security to
prevent:
  Service stealing
  Denial of service
  Confidentiality violations
  Integrity problems
  Service misuse

  Most of today’s mechanisms are insufficient to
guarantee computer security

λ

July 19, 2012 Marco Pistoia, IBM Research 3

Threat Evolution

1960 1970 1980 1990 2000 2012

Program
sharing

Program
downloading

Program installation
only by experts

Mobile
code

Web
applications

Mobile
applications

λ

July 19, 2012 Marco Pistoia, IBM Research 4

Top-Ten Web-Application
Security Vulnerabilities
Top-ten security vulnerabilities according to the Open Web Application Security Project
(OWASP) (http://www.owasp.org)

1.  Injection
2.  Cross-site scripting
3.  Broken authentication and session management
4.  Insecure direct object reference
5.  Cross site request forgery (CSRF)
6.  Security misconfiguration
7.  Unsecure cryptographic storage
8.  Failure to restrict URL accesses
9.  Insufficient transport-layer protection
10. Unvalidated redirects and forwards

λ

July 19, 2012 Marco Pistoia, IBM Research 5

The Need for
Language-Based Security
  Operating-system security is low-level
  Many attacks are at the application level
  Operating-system security is insufficient
  Language-Based Security is the ability to define security

policies and enforcement mechanisms using program
analysis or techniques that are embedded into the
programming language

  Enforcement time:
  Before: Analyze and fix
  During: Monitor and halt
  After: Roll back

λ

July 19, 2012 Marco Pistoia, IBM Research 6

Outline

  Fundamental security concepts and principles
  Access control
  Information security
  Principle of Least Privilege
  Principle of Complete Mediation

  Analysis for access control and information flow

λ

Part I

Fundamentals Security
Concepts and Principles

λ

July 19, 2012 Marco Pistoia, IBM Research 8

Access Control

  Mechanism to define and enforce which
principals can access which resources

  Two components:
  Authentication ascertains the identity of the principal

who is making the requests
  Authorization verifies that the principal is allowed to

access the resource that has been requested

λ

July 19, 2012 Marco Pistoia, IBM Research 9

Authorization Decisions and
Authorization Matrix

  An authorization decision
can be seen as a function

  An authorization policy
can be seen as a matrix
[Lampson, 1992]
  The columns of the matrix

are Access Control Lists
(ACLs)

  The matrix grants access to
system resources to users
and groups

(principal, request, object) → true/false

File C:
\log.txt

Socket
ibm.com:80

System
configuration

Administrator
principal

read, write,
execute

listen,
connect

read, write

Text editor
program

read, write - read

Internet browser - connect read

λ

July 19, 2012 Marco Pistoia, IBM Research 10

Role-Based Access Control
(RBAC)

  RBAC is a form of access control that can better
represent the protection of information in
enterprise systems [Ferraiolo and Kuhn, 1992]

  A role is a set of permissions
  Each permission represents a responsibility in an

enterprise
  Roles are then assigned to users and groups

λ

July 19, 2012 Marco Pistoia, IBM Research 11

The Principle of Least Privilege

  In a computing environment, every module (such
as a process, a user, or a program) must be able to
access only such information and resources that
are necessary to its legitimate purpose [Saltzer
and Shroeder, 1975]

  Example:
  Grant a text editor the permission to access the file

system
  Do not grant a text editor the permission to open a

socket connection

λ

July 19, 2012 Marco Pistoia, IBM Research 12

Problems in Enforcing the
Principle of Least Privilege

  An authorization policy must be neither too
permissive nor too restrictive
  Too permissive:

  Violation of the Principle of Least Privilege
  Program exposed to security attacks

  Too restrictive
  The policy-enforcement mechanism will generate run-time

authorization failures
  Security problems may arise

λ

July 19, 2012 Marco Pistoia, IBM Research 13

The Principle of Complete
Mediation

  Every access to any resource must be mediated by an
appropriate authorization check [Saltzer and Shroeder,
1975]

Client.main()

m1()

checkPermission() getResource()

m2()

m3()

Library

λ

July 19, 2012 Marco Pistoia, IBM Research 14

Problems in Enforcing the
Principle of Complete Mediation

  Enforcement is system-specific
  Different systems have different resources that need to

be protected
  Different systems have different protection

mechanisms
  The authorization check for a particular resource

must check for authorization appropriately
  Authorization caching can cause violations of the

Principle of Complete Mediation

λ

July 19, 2012 Marco Pistoia, IBM Research 15

Information Security
  No illicit flow of information should be allowed in a

program
  Two dimensions of information security:

  Integrity: Valuable information should not be damaged by any
computation

  Confidentiality: Valuable information should not be revealed by
any computation

  Confidentiality different from:
  Secrecy: Secret information is not leaked to public listeners
  Anonymity: A public observer cannot learn the identities of the

participating principals even though actions might be known

λ

July 19, 2012 Marco Pistoia, IBM Research 16

Static Information Flow

  Information-flow policies are partial orders [Denning,
1976]

  Programs are annotated with integrity and confidentiality
information-flow policies [Denning and Denning, 1977]

  The compiler
  Verifies that all the execution of the program satisfy the policies
  Transforms the program to ensure that policies are obeyed

  The run-time system validates the program policies
against the system policies

λ

July 19, 2012 Marco Pistoia, IBM Research 17

Noninterference

  “Low behavior of the program is not affected by any high
security data” [Goguen and Meseguer, 1982]

  Dual interpretation for integrity and confidentiality

Integrity Confidentiality

High Untrusted Secret

Low Trusted Public

(H1, L1) (H2, L2)

(H1', L1') (H2', L2')

≈L

≈L

L1 = L2

L1' = L2'

λ

July 19, 2012 Marco Pistoia, IBM Research 18

Security Types

  Add information-flow policies as type annotations
  Reject any flow from higher to lower
  Proving noninterference

  Any type-safe program with information-flow security
types satisfies noninterference [Volpano, et al, 1996]

  Proved by showing that each execution step preserves
low-observable equivalence

λ

July 19, 2012 Marco Pistoia, IBM Research 19

Java Information Flow (Jif)

  Jif [Myers, 1999] annotates Java programs with
labels
  A label contains a policy in terms of principals
  A variable has a type and a label

  Achieves both access control and information
flow

λ

July 19, 2012 Marco Pistoia, IBM Research 20

Downgrading
  An information-security policy can establish that:

  Certain parts of secret information can be declassified and
revealed to certain public listeners. For example:
  Last 4 digits of SSN can be revealed to bank teller
  Result of a password check can be revealed to anyone

  Certain parts of untrusted input can be endorsed and used in
certain trusted computations. For example:
  Untrusted user input can be used in a Web application if it is

properly formatted

Integrity Confidentiality

High Untrusted Secret

Low Trusted Public

Downgrading Endorsement Declassification

λ

July 19, 2012 Marco Pistoia, IBM Research 21

Example: Injection Flaws
in Web Applications

public void submitQuery(String userName) {
 String query =
 "SELECT id FROM users WHERE name = '" + userName + "'";
 execute(query);
}

foo';drop table custid;

λ

July 19, 2012 Marco Pistoia, IBM Research 22

Problems in Enforcing
Information Security
  Policies can become very

complex
  It may be difficult and

expensive to track the actual
flows of information
  Complex flows through the

program
  Covert channels

  Implicit flows
  Confidentiality: value of x

may reveal values of a and b
  Integrity: value of b influences

value of x even if b is false

int x = 0;
if (b) {
 x = a;
}

λ

Part II

JavaScript Security

λ

July 19, 2012 Marco Pistoia, IBM Research 24

Risks with JavaScript

  Downloading and running programs written by unknown
parties is dangerous

  Most people do not realize that nearly every time they
load a Web page, they are allowing code written by an
unknown party to execute on their computers

  Since it would be annoying to have to confirm your wish
to run JavaScript each time you load a new Web page,
browsers implement a security policy designed to reduce
the risk such code poses to the end user

  Example: JavaScript code cannot access your file system

λ

July 19, 2012 Marco Pistoia, IBM Research 25

JavaScript Security Model

  Scripts are confined inside a sandbox where they cannot
have access to the operating system or file system

  Scripts are permitted access only to data in the current
document or closely related documents (those from the
same site as the current document)

  No access is granted to the local file system, the memory
space of other running programs, or the operating
system’s networking layer

λ

July 19, 2012 Marco Pistoia, IBM Research 26

The Reality
  The reality of the situation, however, is that often scripts are

not properly sandboxed
  There are numerous ways that a script can exercise power

beyond what you might expect, both by design and by
accident

  The fundamental premise of browsers’ security models is
that there randomly encountered code is by default hostile

  However
  Code coming from trusted sources can escape the sandbox, often

without requiring the explicit consent of the user
  Scripts can gain access to otherwise privileged information in other

browser windows when the pages come from related domains

λ

July 19, 2012 Marco Pistoia, IBM Research 27

Same-Origin Policy

  It is the primary JavaScript security policy
  It prevents scripts loaded from one Web site from

getting or setting properties of a document loaded
from a different site or using a different protocol
and port number

  It applies to scripts attempting to access the
content of frames
  If two frames have not been loaded from the same site

using the same protocol, scripts cannot cross the
framed boundary

λ

July 19, 2012 Marco Pistoia, IBM Research 28

Same-Origin Check
  When a script attempts to access properties or methods in

a different window, for example, using the handle
returned by window.open(), the browser performs a same-
origin check on the URLs of the documents in question
  If the URLs of the documents pass this check, the property can

be accessed
  If they do not, an error is thrown

  The same-origin check consists of verifying that the URL
of the document in the target window “has the same
origin” as the document containing the calling script

  Two documents have the same origin if they were loaded
from the same server using the same protocol and port

λ

July 19, 2012 Marco Pistoia, IBM Research 29

Problems

  Older browsers did not enforce the same-origin
policy correctly

  The same-origin policy does not protect against
cross-site interactions when two Web sites are
hosted by the same server

  You cannot turn off the same-origin policy, for
example in an intranet, so you have to use
ActiveX controls or use signed scripts

  Denial of service attacks are possible

λ
Example

July 19, 2012 Marco Pistoia, IBM Research 30

URL of Target Window Result Motivation

1 http://www.nyu.edu/index.html success

2 http://www.nyu.edu/~hirzel/index.html success

3 ftp://www.nyu.edu failure Different protocol

4 http://www.columbia.edu/index.html failure Different domain

5 http://www.nyu.edu:80/index.html success

6 http://www.nyu.edu:8080/index.html failure Different port

7 http://www2.nyu.edu/dir/page.html failure Different domain

A JavaScript program was loaded from http://www.nyu.edu/dir/page.html

λ

July 19, 2012 Marco Pistoia, IBM Research 31

XSS
  Consider a site that accepts a user name in form input and then displays

it in the page
  Entering the name John and clicking Submit might result in loading a

URL like http://www.example.com/mycgi?
username=John, and the following snippet of HTML to appear in
the resulting page:
Hello, John!

  If someone can get you to click on a link to http://
www.example.com/ mycgi?
username=John<script>alert('Uh oh');</script>, the
CGI might write the following HTML into the resulting page:
Hello, John<script>alert('Uh oh');</script></
b>

  The script passed in through the username URL parameter was written
directly into the page, and its JavaScript is executed as normal

λ

July 19, 2012 Marco Pistoia, IBM Research 32

XSS Prevention

  Input validation
  HTML-escape data

λ

JavaScript is present on many
popular Web sites

33

λ

34

λ

Consequences of Taint Violations

•  Read and write access to saved data in cookies and local data
stores

•  Read and write access to data in the web page

•  Key loggers

•  Impersonation

•  Phishing via page modifications or redirects

35

λ
var el1 = document.getElementById("d1");	
function foo() {	
 var el2 = document.getElementById("d2");	
 function bar() {	
 var el3 = new Element();	
 var s = encodeURIComponent(el2.innerText);	
 document.write(s); 	
 el1.innerHTML = el2.innerText; 	
 document.location = el3.innerText; 	
 }	
 bar();	
}	
foo();	
function baz(a, b) {	
 a.f = document.URL; 	
 document.write(b.f); 	
}	
var x = new Object();	
baz(x, x);

Ge#ng	
 data	
 from	
 the	
 DOM	

Sani4zing	
 some,	
 but	
 not	

all,	
 of	
 the	
 data	

Wri4ng	
 untrusted	
 data	

into	
 web	
 page	

Wri4ng	
 unchecked	
 data	

to	
 the	
 web	
 page	

36

λ
var el1 = document.getElementById("d1");	
function foo() {	
 var el2 = document.getElementById("d2");	
 function bar() {	
 var el3 = new Element();	
 var s = encodeURIComponent(el2.innerText);	
 document.write(s); 	
 el1.innerHTML = el2.innerText; 	
 document.location = el3.innerText; 	
 }	
 bar();	
}	
foo();	
function baz(a, b) {	
 a.f = document.URL; 	
 document.write(b.f); 	
}	
var x = new Object();	
baz(x, x);

37

λ
var el1 = document.getElementById("d1");	
function foo() {	
 var el2 = document.getElementById("d2");	
 function bar() {	
 var el3 = new Element();	
 var s = encodeURIComponent(el2.innerText);	
 document.write(s); 	
 el1.innerHTML = el2.innerText; 	
 document.location = el3.innerText; 	
 }	
 bar();	
}	
foo();	
function baz(a, b) {	
 a.f = document.URL; 	
 document.write(b.f); 	
}	
var x = new Object();	
baz(x, x);

38

λ Rules

•  A rule is a triple <Sources, Sinks, Sanitizers>

•  Not all sources are valid for all sinks, and not all sanitizers

are valid for all sinks

39

λ Rules

•  A rule is a triple <Sources, Sinks, Sanitizers>

•  Not all sources are valid for all sinks, and not all sanitizers

are valid for all sinks

•  Sources

–  Seeds of untrusted data

–  Field gets or returns of function calls

–  Ex: document.url	

40

λ Rules

•  A rule is a triple <Sources, Sinks, Sanitizers>

•  Not all sources are valid for all sinks, and not all sanitizers

are valid for all sinks

•  Sources

–  Seeds of untrusted data

–  Field gets or returns of function calls

–  Ex: document.url	

•  Sinks

–  Security critical operations

–  Field puts or parameters to function calls

–  Ex: element.innerHTML	

41

λ Rules

•  A rule is a triple <Sources, Sinks, Sanitizers>

•  Not all sources are valid for all sinks, and not all sanitizers

are valid for all sinks

•  Sources

–  Seeds of untrusted data

–  Field gets or returns of function calls

–  Ex: document.url	

•  Sinks

–  Security critical operations

–  Field puts or parameters to function calls

–  Ex: element.innerHTML	

•  Sanitizers

–  Marks flow as non-dangerous

–  Function calls

–  Ex: encodeURIComponent(str)	

42

λ

var a = "foo" + "bar";	
var b = obj[a];	
function F() {	
 this.bar = document.url;	
}	

function G() {	
}	

G.prototype = new F();	
var a = new G();	
write(g.bar);	

function foo() {	
 var y = 42;	
 var bar = function() {	
 write(y);	
 }	
}	

Complexities of JavaScript

•  Reflective property
access

•  Prototype chain
property lookup

•  Lexical scoping

•  Function pointers

•  eval and its relatives

var m = function() ...	
var k = function(f) {	
 f();	
}	
k(m);	

43

eval("document.write('evil')");	

λ Example

function foo(p1, p2) {	
 p1.f = p2.f;	
}	

var a = new Object();	
var b = new Object();	
b.f = window.location.toString();	

var c = new Object();	
var d = new Object();	
d.f = "safe";	

foo(a, b);	
foo(c, d);	

document.write(a.f); // This is a taint violation	
document.write(c.f); // This is NOT a taint violation	

Since d.f	
 is not tainted, c.f	
 will not be tainted

44

λ

45

λ

Part III

PHP Security

λ

July 19, 2012 Marco Pistoia, IBM Research 47

Security Support
  Security APIs

  Encryption
  SSL
  SSH

  Necessary to validate user input
  Metacharacters

  $ & ' " …
  Wrong type of input

  Dates
  Numerical values

  Too much input
  HTML text areas can contain up to 8 MB

λ

July 19, 2012 Marco Pistoia, IBM Research 48

SQL Injection

Attacker

Web Application

Evil SQL statement

Steal information;
Modify information;
Deface application;
Denial of Service

λ

July 19, 2012 Marco Pistoia, IBM Research 49

SQL Injection in Code

SELECT * FROM users WHERE name='jsmith' AND pwd='Demo1234'

SELECT * FROM users WHERE name='foo';drop table custid;--' AND pwd=''

String query = “SELECT * FROM users WHERE name=‘” +
userName + “’ AND pwd=‘” + pwd + “’”;

Ouch!

λ

July 19, 2012 Marco Pistoia, IBM Research 50

Checking for SQL Injection

  Application responds with SQL error,
suggesting to the attacker that string is being used to
construct SQL query

Put apostrophe
into textbox

λ

July 19, 2012 Marco Pistoia, IBM Research 51

Cross Site Scripting (XSS)

Attacker Victim

Web Application

link
embedded with

evil script

Attacker’s evil script
executed using

victim’s credentials

λ

July 19, 2012 Marco Pistoia, IBM Research 52

Stored XSS

Attacker Victim

Attacker’s
evil script

Attacker’s evil script
executed using

victim’s credentials

Web Application

λ

July 19, 2012 Marco Pistoia, IBM Research 53

Checking for XSS
Input some text

into textbox

abc

  The warning sign:
User input embedded in HTML response

λ

July 19, 2012 Marco Pistoia, IBM Research 54

Checking for XSS (cont.)
Put an evil JavaScript

into the textbox

<script>alert(1)</script>

  Evil script was executed by browser

  Cause: Application did not apply HTML encoding

  Link containing this script could be sent to victim

λ

July 19, 2012 Marco Pistoia, IBM Research 55

What Needs to Be Validated?

  ANY and ALL user input
  But also data coming from:

  Database
  Network
  Application settings
  Web services
  File system
  Command line arguments
  Environment variables

  Anything external to your application

λ

July 19, 2012 Marco Pistoia, IBM Research 56

How to Use User Input and Stay
Safe

  User input flows into HTML page?

  User input flows into SQL command?

  User input flows into URL or HTTP Header?

  User input flows into Log file?

  User input flows into a command execution?

  Apply HTML encoding!

  Apply SQL encoding!

  Apply URL encoding!

  Remove/encode CR/LFs!

  Apply white-listing!

λ

July 19, 2012 Marco Pistoia, IBM Research 57

Bibliography
  Salvatore Guarnieri, Marco Pistoia, Omer Tripp, Julian Dolby, Stephen

Teilhet, Ryan Berg. Saving the World Wide Web for Vulnerable JavaScript.
In Proceedings of the ISSTA 2011 Conference, Toronto, ON, Canada, July
2011.

  Paolina Centonze, Robert J. Flynn, and Marco Pistoia. Combining Static and
Dynamic Analysis for Automatic Identification of Precise Access-Control
Policies. In Proceedings of the Annual Computer Security Applications
Conference (ACSAC 2007), Miami Beach, FL, December 2007.

  Marco Pistoia, Anindya Banerjee, and David Naumann.
Beyond Stack Inspection: A Unified Access-Control and Information-Flow
Security Model. In Proceedings of the
IEEE Symposium on Security and Privacy 2007, Oakland, CA, May
2007.

  Marco Pistoia, Stephen J. Fink, Robert J. Flynn, and Eran Yahav.
When Role Models Have Flaws: Static Validation of Enterprise Security
Policies. In Proceedings of the 29th International Conference on Software
Engineering (ICSE 2007), Minneapolis, MN, May 2007.

  Marco Pistoia, Satish Chandra, Stephen Fink, and Eran Yahav.
A Survey of Static Analysis Methods for Identifying Security Vulnerabilities
in Software Systems. IBM Systems Journal, volume 46, number 2,
Armonk, NY, USA, May 2007. International Business Machines
Corporation.

  Marco Pistoia and Francesco Logozzo.
Program Analysis for Security and Privacy. In Object-Oriented Technology:
ECOOP 2006 Workshop Reader, Final Reports. Twentieth European
Conference on Object-Oriented Programming (ECOOP 2006), Nantes,
France, July 2006. Lecture Notes in Computer Science (LNCS), volume
4379. Springer-Verlag.

  Paolina Centonze, Gleb Naumovich, Stephen J. Fink, and Marco Pistoia.
Role-Based Access Control Consistency Validation. In Proceedings of the
ACM SIGSOFT 2006 International Symposium on Software Testing and
Analysis (ISSTA 2006), Portland, ME, USA, July 2006. ACM Press.

  Xiaolan Zhang, Larry Koved, Marco Pistoia, Sam Weber, Trent Jaeger,
Guillaume Marceau, and Liangzhao Zeng.
The Case for Analysis Preserving Language Transformation. In Proceedings
of the ACM SIGSOFT 2006 International Symposium on Software Testing
and Analysis (ISSTA 2006), Portland, ME, USA, July 2006. ACM Press.

  Marco Pistoia, Robert J. Flynn, Larry Koved, and Vugranam C. Sreedhar.
Interprocedural Analysis for Privileged Code Placement and Tainted
Variable Detection. In Proceedings of the 19th European Conference on
Object-Oriented Programming (ECOOP 2005), pages 362-386, Glasgow,
Scotland, UK, July 2005. Springer-Verlag.

  Larry Koved, Marco Pistoia, and Aaron Kershenbaum.
Access Rights Analysis for Java. In Proceedings of the 17th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 2002), pages 359-372, Seattle, WA, USA,
November 2002. ACM Press.

λ

Questions?

pistoia@us.ibm.com
www.research.ibm.com/people/p/pistoia

