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Computer Security 

  Hardware, software, and network security to 
prevent: 
  Service stealing 
  Denial of service 
  Confidentiality violations 
  Integrity problems 
  Service misuse 

  Most of today’s mechanisms are insufficient to 
guarantee computer security 
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Threat Evolution 
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Top-Ten Web-Application 
Security Vulnerabilities 
Top-ten security vulnerabilities according to the Open Web Application Security Project 
(OWASP) (http://www.owasp.org) 

1.  Injection 
2.  Cross-site scripting 
3.  Broken authentication and session management 
4.  Insecure direct object reference 
5.  Cross site request forgery (CSRF) 
6.  Security misconfiguration 
7.  Unsecure cryptographic storage 
8.  Failure to restrict URL accesses 
9.  Insufficient transport-layer protection 
10. Unvalidated redirects and forwards 
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The Need for 
Language-Based Security 
  Operating-system security is low-level 
  Many attacks are at the application level 
  Operating-system security is insufficient 
  Language-Based Security is the ability to define security 

policies and enforcement mechanisms using program 
analysis or techniques that are embedded into the 
programming language 

  Enforcement time: 
  Before: Analyze and fix 
  During: Monitor and halt 
  After: Roll back 
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Outline 

  Fundamental security concepts and principles 
  Access control 
  Information security 
  Principle of Least Privilege 
  Principle of Complete Mediation 

  Analysis for access control and information flow 
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Part I 

Fundamentals Security 
Concepts and Principles 
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Access Control 

  Mechanism to define and enforce which 
principals can access which resources 

  Two components: 
  Authentication ascertains the identity of the principal 

who is making the requests 
  Authorization verifies that the principal is allowed to 

access the resource that has been requested 
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Authorization Decisions and 
Authorization Matrix 

  An authorization decision 
can be seen as a function 

  An authorization policy 
can be seen as a matrix 
[Lampson, 1992] 
  The columns of the matrix 

are Access Control Lists 
(ACLs) 

  The matrix grants access to 
system resources to users 
and groups 

(principal, request, object) → true/false 

File C:
\log.txt 

Socket 
ibm.com:80 

System 
configuration 

Administrator 
principal 

read, write, 
execute 

listen, 
connect 

read, write 

Text editor 
program 

read, write - read 

Internet browser - connect read 
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Role-Based Access Control 
(RBAC) 

  RBAC is a form of access control that can better 
represent the protection of information in 
enterprise systems [Ferraiolo and Kuhn, 1992] 

  A role is a set of permissions 
  Each permission represents a responsibility in an 

enterprise 
  Roles are then assigned to users and groups 
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The Principle of Least Privilege 

  In a computing environment, every module (such 
as a process, a user, or a program) must be able to 
access only such information and resources that 
are necessary to its legitimate purpose [Saltzer 
and Shroeder, 1975] 

  Example: 
  Grant a text editor the permission to access the file 

system 
  Do not grant a text editor the permission to open a 

socket connection 



λ 

July 19, 2012 Marco Pistoia, IBM Research 12 

Problems in Enforcing the 
Principle of Least Privilege 

  An authorization policy must be neither too 
permissive nor too restrictive 
  Too permissive: 

  Violation of the Principle of Least Privilege 
  Program exposed to security attacks 

  Too restrictive 
  The policy-enforcement mechanism will generate run-time 

authorization failures 
  Security problems may arise 
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The Principle of Complete 
Mediation 

  Every access to any resource must be mediated by an 
appropriate authorization check [Saltzer and Shroeder, 
1975] 

Client.main() 

m1() 

checkPermission() getResource() 

m2() 

m3() 

Library 
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Problems in Enforcing the 
Principle of Complete Mediation 

  Enforcement is system-specific 
  Different systems have different resources that need to 

be protected 
  Different systems have different protection 

mechanisms 
  The authorization check for a particular resource 

must check for authorization appropriately 
  Authorization caching can cause violations of the 

Principle of Complete Mediation 
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Information Security 
  No illicit flow of information should be allowed in a 

program 
  Two dimensions of information security: 

  Integrity: Valuable information should not be damaged by any 
computation 

  Confidentiality: Valuable information should not be revealed by 
any computation 

  Confidentiality different from: 
  Secrecy: Secret information is not leaked to public listeners 
  Anonymity: A public observer cannot learn the identities of the 

participating principals even though actions might be known 



λ 

July 19, 2012 Marco Pistoia, IBM Research 16 

Static Information Flow 

  Information-flow policies are partial orders [Denning, 
1976] 

  Programs are annotated with integrity and confidentiality 
information-flow policies [Denning and Denning, 1977] 

  The compiler 
  Verifies that all the execution of the program satisfy the policies 
  Transforms the program to ensure that policies are obeyed 

  The run-time system validates the program policies 
against the system policies 
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Noninterference 

  “Low behavior of the program is not affected by any high 
security data” [Goguen and Meseguer, 1982] 

  Dual interpretation for integrity and confidentiality 

Integrity Confidentiality 

High Untrusted Secret 

Low Trusted Public 

(H1, L1) (H2, L2) 

(H1', L1') (H2', L2') 

≈L 

≈L 

L1 = L2 

L1' = L2' 
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Security Types 

  Add information-flow policies as type annotations 
  Reject any flow from higher to lower 
  Proving noninterference 

  Any type-safe program with information-flow security 
types satisfies noninterference [Volpano, et al, 1996] 

  Proved by showing that each execution step preserves 
low-observable equivalence 
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Java Information Flow (Jif) 

  Jif [Myers, 1999] annotates Java programs with 
labels 
  A label contains a policy in terms of principals 
  A variable has a type and a label 

  Achieves both access control and information 
flow 
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Downgrading 
  An information-security policy can establish that: 

  Certain parts of secret information can be declassified and 
revealed to certain public listeners.  For example: 
  Last 4 digits of SSN can be revealed to bank teller 
  Result of a password check can be revealed to anyone 

  Certain parts of untrusted input can be endorsed and used in 
certain trusted computations.  For example: 
  Untrusted user input can be used in a Web application if it is 

properly formatted 

Integrity Confidentiality 

High Untrusted Secret 

Low Trusted Public 

Downgrading Endorsement Declassification 
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Example: Injection Flaws 
in Web Applications 

public void submitQuery(String userName) { 
   String query = 
      "SELECT id FROM users WHERE name = '" + userName + "'"; 
   execute(query); 
} 

foo';drop table custid; 
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Problems in Enforcing 
Information Security 
  Policies can become very 

complex 
  It may be difficult and 

expensive to track the actual 
flows of information 
  Complex flows through the 

program 
  Covert channels 

  Implicit flows 
  Confidentiality: value of x 

may reveal values of a and b 
  Integrity: value of b influences 

value of x even if b is false 

int x = 0; 
if (b) { 
   x = a; 
} 
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Part II 

JavaScript Security 
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Risks with JavaScript 

  Downloading and running programs written by unknown 
parties is dangerous 

  Most people do not realize that nearly every time they 
load a Web page, they are allowing code written by an 
unknown party to execute on their computers 

  Since it would be annoying to have to confirm your wish 
to run JavaScript each time you load a new Web page, 
browsers implement a security policy designed to reduce 
the risk such code poses to the end user 

  Example: JavaScript code cannot access your file system 
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JavaScript Security Model 

  Scripts are confined inside a sandbox where they cannot 
have access to the operating system or file system 

  Scripts are permitted access only to data in the current 
document or closely related documents (those from the 
same site as the current document) 

  No access is granted to the local file system, the memory 
space of other running programs, or the operating 
system’s networking layer 
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The Reality 
  The reality of the situation, however, is that often scripts are 

not properly sandboxed 
  There are numerous ways that a script can exercise power 

beyond what you might expect, both by design and by 
accident 

  The fundamental premise of browsers’ security models is 
that there randomly encountered code is by default hostile 

  However 
  Code coming from trusted sources can escape the sandbox, often 

without requiring the explicit consent of the user 
  Scripts can gain access to otherwise privileged information in other 

browser windows when the pages come from related domains 



λ 

July 19, 2012 Marco Pistoia, IBM Research 27 

Same-Origin Policy 

  It is the primary JavaScript security policy 
  It prevents scripts loaded from one Web site from 

getting or setting properties of a document loaded 
from a different site or using a different protocol 
and port number 

  It applies to scripts attempting to access the 
content of frames 
  If two frames have not been loaded from the same site 

using the same protocol, scripts cannot cross the 
framed boundary 



λ 

July 19, 2012 Marco Pistoia, IBM Research 28 

Same-Origin Check 
  When a script attempts to access properties or methods in 

a different window, for example, using the handle 
returned by window.open(), the browser performs a same-
origin check on the URLs of the documents in question 
  If the URLs of the documents pass this check, the property can 

be accessed 
  If they do not, an error is thrown 

  The same-origin check consists of verifying that the URL 
of the document in the target window “has the same 
origin” as the document containing the calling script 

  Two documents have the same origin if they were loaded 
from the same server using the same protocol and port 



λ 

July 19, 2012 Marco Pistoia, IBM Research 29 

Problems 

  Older browsers did not enforce the same-origin 
policy correctly 

  The same-origin policy does not protect against 
cross-site interactions when two Web sites are 
hosted by the same server 

  You cannot turn off the same-origin policy, for 
example in an intranet, so you have to use 
ActiveX controls or use signed scripts 

  Denial of service attacks are possible 
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URL of Target Window Result Motivation 

1 http://www.nyu.edu/index.html success 

2 http://www.nyu.edu/~hirzel/index.html success 

3 ftp://www.nyu.edu failure Different protocol 

4 http://www.columbia.edu/index.html failure Different domain 

5 http://www.nyu.edu:80/index.html success 

6 http://www.nyu.edu:8080/index.html failure Different port 

7 http://www2.nyu.edu/dir/page.html failure Different domain 

A JavaScript program was loaded from http://www.nyu.edu/dir/page.html 
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XSS 
  Consider a site that accepts a user name in form input and then displays 

it in the page 
  Entering the name John and clicking Submit might result in loading a 

URL like http://www.example.com/mycgi?
username=John, and the following snippet of HTML to appear in 
the resulting page: 
Hello, <b>John</b>!  

  If someone can get you to click on a link to http://
www.example.com/ mycgi?
username=John<script>alert('Uh oh');</script>, the 
CGI might write the following HTML into the resulting page:  
Hello, <b>John<script>alert('Uh oh');</script></
b>  

  The script passed in through the username URL parameter was written 
directly into the page, and its JavaScript is executed as normal 
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XSS Prevention 

  Input validation 
  HTML-escape data 



λ 

JavaScript is present on many 
popular Web sites
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Consequences of Taint Violations


•  Read and write access to saved data in cookies and local data 
stores

•  Read and write access to data in the web page 

•  Key loggers

•  Impersonation

•  Phishing via page modifications or redirects 
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var el1 = document.getElementById("d1");	
function foo() {	
  var el2 = document.getElementById("d2");	
  function bar() {	
    var el3 = new Element();	
    var s = encodeURIComponent(el2.innerText);	
    document.write(s);                    	
    el1.innerHTML = el2.innerText;          	
    document.location = el3.innerText;  	
  }	
  bar();	
}	
foo();	
function baz(a, b) {	
 a.f = document.URL; 	
 document.write(b.f);                       	
}	
var x = new Object();	
baz(x, x);


Ge#ng	
  data	
  from	
  the	
  DOM	
  

Sani4zing	
  some,	
  but	
  not	
  
all,	
  of	
  the	
  data	
  

Wri4ng	
  untrusted	
  data	
  
into	
  web	
  page	
  

Wri4ng	
  unchecked	
  data	
  
to	
  the	
  web	
  page	
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var el1 = document.getElementById("d1");	
function foo() {	
  var el2 = document.getElementById("d2");	
  function bar() {	
    var el3 = new Element();	
    var s = encodeURIComponent(el2.innerText);	
    document.write(s);                    	
    el1.innerHTML = el2.innerText;          	
    document.location = el3.innerText;  	
  }	
  bar();	
}	
foo();	
function baz(a, b) {	
 a.f = document.URL; 	
 document.write(b.f);                       	
}	
var x = new Object();	
baz(x, x);
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var el1 = document.getElementById("d1");	
function foo() {	
  var el2 = document.getElementById("d2");	
  function bar() {	
    var el3 = new Element();	
    var s = encodeURIComponent(el2.innerText);	
    document.write(s);                    	
    el1.innerHTML = el2.innerText;          	
    document.location = el3.innerText;  	
  }	
  bar();	
}	
foo();	
function baz(a, b) {	
 a.f = document.URL; 	
 document.write(b.f);                       	
}	
var x = new Object();	
baz(x, x);
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λ Rules


•  A rule is a triple <Sources, Sinks, Sanitizers>

•  Not all sources are valid for all sinks, and not all sanitizers 

are valid for all sinks
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λ Rules


•  A rule is a triple <Sources, Sinks, Sanitizers>

•  Not all sources are valid for all sinks, and not all sanitizers 

are valid for all sinks


•  Sources

–  Seeds of untrusted data

–  Field gets or returns of function calls

–  Ex: document.url	
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λ Rules


•  A rule is a triple <Sources, Sinks, Sanitizers>

•  Not all sources are valid for all sinks, and not all sanitizers 

are valid for all sinks


•  Sources

–  Seeds of untrusted data


–  Field gets or returns of function calls

–  Ex: document.url	

•  Sinks

–  Security critical operations

–  Field puts or parameters to function calls

–  Ex: element.innerHTML	
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λ Rules


•  A rule is a triple <Sources, Sinks, Sanitizers>

•  Not all sources are valid for all sinks, and not all sanitizers 

are valid for all sinks


•  Sources

–  Seeds of untrusted data


–  Field gets or returns of function calls

–  Ex: document.url	

•  Sinks

–  Security critical operations


–  Field puts or parameters to function calls

–  Ex: element.innerHTML	

•  Sanitizers

–  Marks flow as non-dangerous

–  Function calls

–  Ex: encodeURIComponent(str)	

42 
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var a = "foo" + "bar";	
var b = obj[a];	
function F() {	
  this.bar = document.url;	
}	

function G() {	
}	

G.prototype = new F();	
var a = new G();	
write(g.bar);	

function foo() {	
  var y = 42;	
  var bar = function() {	
    write(y);	
  }	
}	

Complexities of JavaScript


•  Reflective property 
access


•  Prototype chain 
property lookup


•  Lexical scoping

•  Function pointers

•  eval and its relatives


var m = function() ...	
var k = function(f) {	
  f();	
}	
k(m);	

43 

eval("document.write('evil')");	



λ Example

function foo(p1, p2) {	
  p1.f = p2.f;	
}	

var a = new Object();	
var b = new Object();	
b.f = window.location.toString();	

var c = new Object();	
var d = new Object();	
d.f = "safe";	

foo(a, b);	
foo(c, d);	

document.write(a.f); // This is a taint violation	
document.write(c.f); // This is NOT a taint violation	

Since d.f	
  is not tainted, c.f	
  will not be tainted
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Part III 

PHP Security 
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Security Support  
  Security APIs 

  Encryption 
  SSL 
  SSH 

  Necessary to validate user input 
  Metacharacters 

  $ & ' " … 
  Wrong type of input 

  Dates 
  Numerical values 

  Too much input 
  HTML text areas can contain up to 8 MB 
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SQL Injection 

Attacker 

Web Application 

Evil SQL statement 

Steal information; 
Modify information; 
Deface application; 
Denial of Service 
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SQL Injection in Code 

SELECT * FROM users WHERE name='jsmith' AND pwd='Demo1234' 

SELECT * FROM users WHERE name='foo';drop table custid;--' AND pwd='' 

String query = “SELECT * FROM users WHERE name=‘” + 
userName + “’ AND pwd=‘” + pwd + “’”; 

Ouch! 



λ 

July 19, 2012 Marco Pistoia, IBM Research 50 

Checking for SQL Injection 

  Application responds with SQL error,  
suggesting to the attacker that string is being used to 
construct SQL query 

Put apostrophe 
into textbox 
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Cross Site Scripting (XSS) 

Attacker Victim 

Web Application 

link  
embedded with 

evil script 

Attacker’s evil script 
executed using  

victim’s credentials 
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Stored XSS 

Attacker Victim 

Attacker’s 
evil script 

Attacker’s evil script 
executed using  

victim’s credentials 

Web Application 
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Checking for XSS 
Input some text 

into textbox 

abc 

  The warning sign: 
User input embedded in HTML response 
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Checking for XSS (cont.) 
Put an evil JavaScript 

into the textbox 

<script>alert(1)</script> 

  Evil script was executed by browser 

  Cause: Application did not apply HTML encoding 

  Link containing this script could be sent to victim 
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What Needs to Be Validated? 

  ANY and ALL user input 
  But also data coming from: 

  Database 
  Network 
  Application settings 
  Web services 
  File system 
  Command line arguments 
  Environment variables 

  Anything external to your application 
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How to Use User Input and Stay 
Safe 

  User input flows into HTML page? 

  User input flows into SQL command? 

  User input flows into URL or HTTP Header? 

  User input flows into Log file? 

  User input flows into a command execution? 

  Apply HTML encoding! 

  Apply SQL encoding! 

  Apply URL encoding! 

  Remove/encode CR/LFs! 

  Apply white-listing! 
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