CS5142 Scripting Languages
Fall 2013

Context-Free Grammars, Parsing

Acknowledgment

These slides are based on slides and lecture notes of Clark Barrett and Robert Grimm.

A Brief History of Programming Languages

The first computer programs were written in machine language.
Machine language is just a sequence of ones and zeroes.

The computer interprets sequences of ones and zeroes as instructions that control the central processing
unit (CPU) of the computer. The length and meaning of the sequences depends on the CPU.

Example

On the 6502, an 8-bit microprocessor used in the Apple Il computer, the following bits add 1 plus
1: 10101001000000010110100100000001.

Or, using base 16, a common shorthand: A9016901.

Programming in machine language requires an extensive understanding of the low-level details of the
computer and is extremely tedious if you want to do anything non-trivial.

But it is the most straightforward way to give instructions to the computer: no extra work is required before
the computer can run the program.

A Brief History of Programming Languages

Before long, programmers started looking for ways to make their job easier. The first step was assembly
language.

Assembly language assigns meaningful names to the sequences of bits that make up instructions for the
CPU.

A program called an assembler is used to translate assembly language into machine language.
Example

The assembly code for the previous example is:
LDA #S01
ADC #3501

Question: How do you write an assembler?

Answer: in machine language!

A Brief History of Programming Languages

Before long, programmers started looking for ways to make their job easier. The first step was assembly
language.

Assembly language assigns meaningful names to the sequences of bits that make up instructions for the
CPU.

A program called an assembler is used to translate assembly language into machine language.
Example

The assembly code for the previous example is:
LDA #S01
ADC #3501

Question: How do you write an assembler?

Answer: in machine language!

4-a

A Brief History of Programming Languages

As computers became more powerful and software more ambitious, programmers needed more efficient
ways to write programs.

This led to the development of high-level languages, the first being FORTRAN.
High-level languages have features designed to make things much easier for the programmer.

In addition, they are largely machine-independent: the same program can be run on different machines
without rewriting it.

But high-level languages require a compiler. The compiler’s job is to convert high-level programs into
machine language. More on this later...

Question: How do you write a compiler?

Answer: in assembly language (at least the first time)

A Brief History of Programming Languages

As computers became more powerful and software more ambitious, programmers needed more efficient
ways to write programs.

This led to the development of high-level languages, the first being FORTRAN.
High-level languages have features designed to make things much easier for the programmer.

In addition, they are largely machine-independent: the same program can be run on different machines
without rewriting it.

But high-level languages require a compiler. The compiler’s job is to convert high-level programs into
machine language. More on this later...

Question: How do you write a compiler?

Answer: in assembly language (at least the first time)

5-a

Compilation overview

Major phases of a compiler:
1. Lexer: Text —> Tokens
2. Parser: Tokens — Parse Tree
3. Intermediate code generation: Parse Tree — Intermed. Representation (IR)
4. Optimization I: IR — IR
5. Target code generation: IR — assembly/machine language

6. Optimization II: target language — target language

Syntax and Semantics

Syntax refers to the structure of the language, i.e. what sequences of characters are well-formed
programs.

e Formal specification of syntax requires a set of rules

e These are often specified using grammars
Semantics denotes meaning:

e Given a well-formed program, what does it mean?

e Meaning may depend on context

We now look at grammars in more detail.

Grammars

A grammar G is atuple (>, N, S, 0), where:

e /V is a set of non-terminal symbols
e S € N is adistinguished non-terminal: the root or start symbol

e). is a set of terminal symbols, also called the alphabet. We require >. to be disjoint from /V (i.e.
YN N = 0.

e 0 is a set of rewrite rules (productions) of the form:

ABC... - XYZ...

where A, B, C, D, X, Y, Z are terminals and non-terminals.
Any sequence consisting of terminals and non-terminals is called a string.

The language defined by a grammar is the set of strings containing only terminal symbols that can be
generated by applying the rewriting rules starting from .S.

Grammars

Consider the following grammar G-
e N={S XY}
e 5=5
e > ={a,b,c}

e 0 consists of the following rules:
-5 —=b
-5 — XbY
- X —a
- X —aX
-Y —c
-Y —-Yc

Some sample derivations:
e S—b
e S — XbY — abY — abc
e S — XbY — aXbY — aaXbY — aaabY — aaabc

The Chomsky hierarchy

e Regular grammars (Type 3)

— All productions have a single non-terminal on the left and a terminal and optionally a non-terminal
on the right

— Non-terminals on the right side of rules must either always preceed terminals or always follow
terminals

— Recognizable by finite state automaton

e Context-free grammars (Type 2)
— All productions have a single non-terminal on the left
— Right side of productions can be any string

— Recognizable by non-deterministic pushdown automaton

e Context-sensitive grammars (Type 1)
— Each production is of the form c A5 — a3,
— Ais a non-terminal, and «, (3, 7y are arbitrary strings («v and 5 may be empty, but not)

— Recognizable by linear bounded automaton

e Unrestricted grammars (Type 0)
— No restrictions

— Recognizable by turing machine

10

Tokens

Tokens are the basic building blocks of programs:
e keywords (begin, end,while).
e identifiers (myVariable, yourType)
e numbers (137, 6.022e23)
e symbols (+, —)
e string literals (“Hello world”)
e described (mainly) by regular grammars

Example: identifiers
Id — Letter IdRest

IdRest — € | Letter IdRest | Digit IdRest

Other issues: international characters, case-sensitivity, limit of identifier length

11

Backus-Naur Form

Backus-Naur Form (BNF) is a notation for context-free grammars:
e alternation: Symb ::= Letter | Digit
e repetition: Id ::= Letter {Symb}

or we can use a Kleene star: Id ::= Letter Symb”

for one or more repetitions: Int ::= Digit™
e option: Num ::= Digit " [. Digit"]

Note that these abbreviations do not add to expressive power of grammar.

12

Parse trees

A parse tree describes the way in which a string in the language of a grammar is derived:

e root of tree is start symbol of grammar

e |eaf nodes are terminal symbols

e internal nodes are non-terminal symbols

e an internal node and its descendants correspond to some production for that non terminal

e top-down tree traversal represents the process of generating the given string from the grammar

e construction of tree from string is parsing

13

Ambiguity

If the parse tree for a string is not unique, the grammar is ambiguous:
E:=E + E|E x E|Id
Two possible parse trees for A + B * C:
e (A+B)*C)
e (A+(BxC))

One solution: rearrange grammar:
E:=E 4+ T|T
T:=T % Id | Id

Why is ambiguity bad?

14

Ambiguity

If the parse tree for a string is not unique, the grammar is ambiguous:
E:=E + E|E x E|Id
Two possible parse trees for A + B * C:
e (A+B)*C)
e (A+(BxC))

One solution: rearrange grammar:
E:=E 4+ T|T
T:=T % Id | Id

Why is ambiguity bad?

14-a

Dangling else problem

Consider:
S ::=if Ethen S

S ::=if E then S else S

The string

if E1 then if E2 then S1 else S2

is ambiguous (Which then does else S2 match?)

Solutions:
® PASCAL rule: else matches most recent if
e grammatical solution: different productions for balanced and unbalanced if-statements

e grammatical solution: introduce explicit end-marker

15

Dangling else problem

Consider:
S ::=if Ethen S

S ::=if E then S else S

The string

if E1 then if E2 then S1 else S2

is ambiguous (Which then does else S2 match?)

Solutions:
® PASCAL rule: else matches most recent if
e grammatical solution: different productions for balanced and unbalanced if-statements

e grammatical solution: introduce explicit end-marker

15-a

