CS 5142
Scripting Languages

10/28/2012
Ruby, Rails

CS5142 Cornell University
10/25/13

Outline

* Ruby
 Rails

© Martin Hirzel CS5142 Cornell University
10/25/13

IM/Iethods, Blocks, Procs

» Declaration: def id [(arg™)] ... end
— Always invoked on an object (a.k.a., the receiver)

— self refers to the object on which the method was
invoked

* Any invocation may be followed by a block
—yield statements will invoke the block
— def mymethod(x) yield x end
—mymethod(3) {|arg*| ..}

* A block is represented by a Proc object
—p = Proc.new {|x| puts x }
— def mymethod(b, x) b.call(x) end

CS5142 Cornell University
10/25/13

T Lambdas

e lambda Is a method in the Kernel module that
also creates a Proc
— 1 = lambda {|x| puts x }
—1l.call()

* A proc is the object form of a block,
behaves like a block

A lambda behaves like a method

« Lambdas are closures

— Binds the the variables in lexical scope where
the lambda is defined (including self)

CS5142 Cornell University 4
10/25/13

Lambdas vs. Blocks

def proc _return
p = Proc.new { return "Proc.new'"}
p.call
return "proc_return method finished"

end

def lambda return
l = lambda { return "lambda" }
l.call
return "lambda return method finished"

end

puts proc return

puts lambda return

CS5142 Cornell University
10/25/13

Using Objects

al = Apple.new (150, "green")

a2 = Apple.new (150, "green")

Constructor calls

a2.color= "red"

Setter call

puts al.prepare("slice")

+ n\nn

puts a2.prepare ("squeeze") + "\n"

CS5142 Cornell University

10/25/13

Method calls

Defining Classes

class Fruit
def initialize(weight)

@weight = weight end Fruit
def weight

Qweight end weiaht
def weight= (value) @ g

@weight = value end |n|t|al|ze()
def pluck

"fruit(" + @weight + "g)" end pIUCk()
def prepare (how) repare

how + "d " + pluck end p p ()

end

 All fields are private, external use requires accessors
(e.g., @weight, weight, weight=)
« Classes are open, can add additional fields+methods

CS5142 Cornell University
10/25/13

mmass Definition Gotcha

These two @weight variables

class Fruit /—\/are different!
@weight = 0
def initialize (weiM\—/

@weight = weight
end
end

 Doesn’t behave as you'd expect
* One is a class variable
« The other is an instance variable

CS5142 Cornell University 8
10/25/13

Self

« Evaluates to the current object
« Remember that class is a function in Ruby

* When class is invoked, self points to the Fruit
class, not an instance of the Fruit class

« When initialize isinvoked, self points to the
Fruit instance

CS5142 Cornell University
10/25/13

Self with Blocks

#<A:0x007£fe42b1063c0>

class A

end

class B
def initialize

@a = A.new
end
def m
@a.instance eval { puts self }

end

end

b = B.new

b.m

CS5142 Cornell University
10/25/13

10

Inheritance in Ruby

class Fruit
def initialize(weight)

@weight = weight_ end Fruit
def weight
@weight end I
def weight= (value) @Welght
@weight = value end |n|t|al|ze()
def pluck
"fruit(" + Q@weight + "g)" end pIUCk()
def prepare (how) prepare()
how + "d " + pluck end
end 14)1
class Apple < Fruit
def initialize(weight , color) App|e
@weight = weight
@color = color @We|ght
end
def color @CO|OF
@color end .
def color= (value) |n|t|al|ze()
@color = value end
def pluck plUCk()
self.color + " apple" end
s prepare()
CS5142 Cornell University 11

10/25/13

Scopes and Visibility

 Visibility of class members
— All instance variables are private
— Methods can be private, protected, or public

* Accessor generation Generates @weight field

class Fruit /\/and weight/weight= methods

attr accessor :weight

def initialize (weight)]
@weight = weight Fruit

end .

def pluck @weight
"fruit(" + @weight + "g)" SRTIPRT

end initialize()

def prepare (how) pIUCk()
how + "d " + pluck

end prepare()

end

© Martin Hirzel CS5142 Cornell University 12
10/25/13

Structure of a Ruby Application

« require file
« Module = like class, but can’ t be instantiated

— Class can include (“mix in”) one or more
modules

— Members of mix-in module are copied into class

— Later definition with same name overrides earlier

— Module can inherit from other module, but not class
— Module can contain methods, classes, modules

 Module Kernel is mixed into class Object
* Top-level subroutines are private instance

methods of the Kernel module

— Visible everywhere, can’t call with explicit receiver
CS5142 Cornell University 13
10/25/13

Arrays

Initialization: $a=[1,2, 3]

— With block: $a=Array.new(10) { |e|2*e}
Indexing: $al...]

— Zero-based, contiguous, integers only

— Negative index counts from end

Deleting: $a.clear (), $a.compact (),
$a.delete at (i)

Lots of other methods

CS5142 Cornell University
10/25/13

14

Hashes

Initialization:

Sh = {'1lb'=>1,'oz'=>16, 'g'=>453}
Indexing: Sh['lb']

— Can use any object as key, not just strings
Deleting: Sh.clear (), $Sh.delete (k)

Lots of other methods

Can have a “default closure”:
return value for keys not explicitly stored

CS5142 Cornell University 15
10/25/13

* Ruby
 Rails

© Martin Hirzel

Outline

CS5142 Cornell University
10/25/13

16

__ Rails
Rails “Hello World”

S rails new Hello
S cd Hello
S rails server

® OO

[I]1 %5 Course~ Freon~¥ Merlinv EC27v Kernel~

Welcome#index

Find me in app/views/welcome/index.html.erb

1U/£O/ 1O

MVC

Model View Controller

updates manipulates

CS5142 Cornell University
10/25/13

18

3+ I

W

Rails Routing

Create a controller named welcome with
action index
rails generate controller welcome index

vi config/routes.rb
uncomment root to: "welcome#index”

CS5142 Cornell University 19
10/25/13

Modify View

$ echo "<p>Hello Class</p>" >> \
app/views/welcome/index.html.erb

® 0o
(<>] [&]) (D] (2] [+][O locatnost3000

[J] 3 Course~¥ Freon¥ Merlinv EC2+¥ Kerne

‘Show iCloud Tabs*

Welcome#index

Find me in app/views/welcome/index.html.erb

Hello Class

CS5142 Cornell University
10/25/13

20

Modify View

$ echo "<p>Hello Class</p>" >> \
app/views/welcome/index.html.erb

® 0o
(<>] [&]) (D] (2] [+][O locatnost3000

[J] 3 Course~¥ Freon¥ Merlinv EC2+¥ Kerne

‘Show iCloud Tabs*

Welcome#index

Find me in app/views/welcome/index.html.erb

Hello Class

CS5142 Cornell University
10/25/13

21

Modify Controller

S pwd
~/rails/Hello/app/controllers

$ cat welcome controller.rb
class WelcomeController <
ApplicationController
def index
end
end

CS5142 Cornell University
10/25/13

22

Reference

Ruby Documentation

 http://www.ruby-lang.org
 http://www.rubyonrails.org

* Book: The Ruby Programming Language.
David Flanagan, Yokihiro Matsumoto.
O’ Reilly, 2008

CS5142 Cornell University
10/25/13

23

Evaluating Ruby

Strengths

« Rails

* Purely object
oriented

* Perl-like =~ and
default variables

Weaknesses

» Less popular than
Java and PHP

* Unusual syntax

CS5142 Cornell University

10/25/13

24

| ast Slide

* No announcements.

« Today’ s lecture
— Ruby

© Martin Hirzel CS5142 Cornell University
10/25/13

25

