
CS5142 Scripting Languages
Fall 2013

Regular Expressions

1

Acknowledgment

These slides are based on slides and lecture notes of Clark Barrett, Robert Grimm, and Ross
Tate.

2

Syntax and Semantics

Syntax refers to the structure of the language, i.e. what sequences of characters are well-formed
programs.

• Formal specification of syntax requires a set of rules

• These are often specified using grammars

Semantics denotes meaning:

• Given a well-formed program, what does it mean?

• Meaning may depend on context

This lecture only covers syntax. Semantic analysis is covered in the compilers course.

We now look at grammars in more detail.

3

Grammars

A grammar G is a tuple (Σ, N, S, δ), where:

• N is a set of non-terminal symbols

• S ∈ N is a distinguished non-terminal: the root or start symbol

• Σ is a set of terminal symbols, also called the alphabet . We require Σ to be disjoint from N (i.e.
Σ ∩N = ∅).
• δ is a set of rewrite rules (productions) of the form:

ABC . . .→ XYZ . . .

where A,B,C,D,X,Y,Z are terminals and non-terminals.

Any sequence consisting of terminals and non-terminals is called a string.

The language defined by a grammar is the set of strings containing only terminal symbols that can be
generated by applying the rewriting rules starting from S.

4

Grammars

Consider the following grammar G:

• N = {S,X, Y }
• S = S

• Σ = {a, b, c}
• δ consists of the following rules:

– S → b

– S → XbY

– X → a

– X → aX

– Y → c

– Y → Y c

Some sample derivations:

• S → b

• S → XbY → abY → abc

• S → XbY → aXbY → aaXbY → aaabY → aaabc

5

The Chomsky hierarchy

• Regular grammars (Type 3)

– All productions have a single non-terminal on the left and a terminal and optionally a non-terminal
on the right

– Non-terminals on the right side of rules must either always preceed terminals or always follow
terminals

– Recognizable by finite state automaton

• Context-free grammars (Type 2)

– All productions have a single non-terminal on the left

– Right side of productions can be any string

– Recognizable by non-deterministic pushdown automaton

• Context-sensitive grammars (Type 1)

– Each production is of the form αAβ → αγβ,

– A is a non-terminal, and α, β, γ are arbitrary strings (α and β may be empty, but not γ)

– Recognizable by linear bounded automaton

• Unrestricted grammars (Type 0)

– No restrictions

– Recognizable by turing machine

6

Regular expressions

An alternate way of describing a regular language over an alphabet Σ is with regular expressions.

We say that a regular expression R denotes the language [[R]] (recall that a language is a set of strings).

Regular expressions over alphabet Σ:

• ε denotes ∅
• a character x, where x ∈ Σ, denotes {x}
• (sequencing) a sequence of two regular expressions RS denotes {αβ |α ∈ [[R]], β ∈ [[S]]}
• (alternation) R|S denotes [[R]] ∪ [[S]]

• (Kleene star)R∗ denotes the set of strings which are concatenations of zero or more strings from [[R]]

• parentheses are used for grouping

• R? ≡ ε|R
• R+ ≡ RR∗

7

Regular grammar example

A grammar for floating point numbers:

Float → Digits | Digits .Digits

Digits → Digit | Digit Digits

Digit → 0|1|2|3|4|5|6|7|8|9

A regular expression for floating point numbers:

(0|1|2|3|4|5|6|7|8|9)+(.(0|1|2|3|4|5|6|7|8|9)+)?

The same thing in PERL:

[0-9]+(\.[0-9]+)?

or

\d+(\.\d+)?

8

Deterministic Finite State Automaton

A deterministic finite automaton M is a tuple (Q,Σ, δ, q0, F), where:

• Q is a finites set of states

• Σ is a finite set of input symbols, also called the alphabet .

• δ is a transition function (δ : Q× Σ→ Q)

• q0 is a initial state (q0 ∈ Q)

• F is a set of accept states (F ⊆ Q)

9

Deterministic Finite State Automaton

A DFA can be drawn as a labeled graph in which states are nodes, the initial state q0 is indicated by an
incoming edge from outside, other edges are labeled with the corresponding input symbol, and final states
inF are marked by nodes with double circles.

For example, consider the following DFA, which accepts only odd numbers expressed in binary,
corresponding to the regular expression (0|1)∗1:

CS 4120 Lecture 3 Automating lexical analysis 29 August 2011
Lecturer: Andrew Myers

A lexer generator converts a lexical specification consisting of a list of regular expressions and corre-
sponding actions into code that breaks the input into tokens. In this lecture we examine how this is done.

We can think of the lexical specification as a big regular expression R1 | R2 | . . . Rn where the Ri are the
descriptions of each of the token.

A lexer generator works by converting this regular expression into a deterministic finite automaton
(DFA). This is done in a couple of steps. First, the regular expression is converted into a nondeterministic
finite automaton (NFA). The NFA is converted into a DFA, which then becomes the basis for a table-driven
lexer.

1 DFAs

We start by reviewing DFAs. A DFA is a abstract machine:

• The machine reads an input stream of symbols x 2 ⌃, where ⌃ is the alphabet of the DFA.

• It has a finite set of states qi.

• There is a distinguished initial state q0 in which the machine begins reading its input.

• As the machine reads each symbol, it changes its state according to a transition function �. On reading
symbol x in state q, it changes to the new state q0 where q0 = �(q, x).

• It has a set of final or accept states F . The machine accepts the input if it arrives at the end of the input
in a final state q 2 F .

A DFA can be drawn as a labeled graph in which states are nodes, the initial state q0 is indicated by an
incoming edge from outside, other edges are labeled with the corresponding input symbol, and final states
in F are marked by nodes with double circles. For example, consider the following DFA, which accepts
only odd numbers expressed in binary, corresponding to the regular expression (0|1)⇤1:

0 1

1

0

We can model illegal characters by adding a non-final error state to the DFA, which we may not bother
to draw in such a diagram. Every state has transitions to the error state on every symbol that cannot lead
to a final state. Therefore � is total.

We can describe the transition function � as a table, which hints at how we might implement the DFA:

0 1
q0 q0 q1

q1 q0 q1

Pseudo-code for implementing a DFA that reads an input of length n, where input[i] is the ith input
character, looks roughly like this:

1

CS 4120 Lecture 3 Automating lexical analysis 29 August 2011
Lecturer: Andrew Myers

A lexer generator converts a lexical specification consisting of a list of regular expressions and corre-
sponding actions into code that breaks the input into tokens. In this lecture we examine how this is done.

We can think of the lexical specification as a big regular expression R1 | R2 | . . . Rn where the Ri are the
descriptions of each of the token.

A lexer generator works by converting this regular expression into a deterministic finite automaton
(DFA). This is done in a couple of steps. First, the regular expression is converted into a nondeterministic
finite automaton (NFA). The NFA is converted into a DFA, which then becomes the basis for a table-driven
lexer.

1 DFAs

We start by reviewing DFAs. A DFA is a abstract machine:

• The machine reads an input stream of symbols x 2 ⌃, where ⌃ is the alphabet of the DFA.

• It has a finite set of states qi.

• There is a distinguished initial state q0 in which the machine begins reading its input.

• As the machine reads each symbol, it changes its state according to a transition function �. On reading
symbol x in state q, it changes to the new state q0 where q0 = �(q, x).

• It has a set of final or accept states F . The machine accepts the input if it arrives at the end of the input
in a final state q 2 F .

A DFA can be drawn as a labeled graph in which states are nodes, the initial state q0 is indicated by an
incoming edge from outside, other edges are labeled with the corresponding input symbol, and final states
in F are marked by nodes with double circles. For example, consider the following DFA, which accepts
only odd numbers expressed in binary, corresponding to the regular expression (0|1)⇤1:

0 1

1

0

We can model illegal characters by adding a non-final error state to the DFA, which we may not bother
to draw in such a diagram. Every state has transitions to the error state on every symbol that cannot lead
to a final state. Therefore � is total.

We can describe the transition function � as a table, which hints at how we might implement the DFA:

0 1
q0 q0 q1

q1 q0 q1

Pseudo-code for implementing a DFA that reads an input of length n, where input[i] is the ith input
character, looks roughly like this:

1

The transition function δ can be described as a table. This hints at how you might implement the DFA.

How do you get the δ from a regex?

10

Non-deterministic Finite State Automaton

An NFA differs from a DFA in that each state can transition to zero or more other states on each input
symbol, can also transition to others without reading a symbol. Edges corresponding to not reading a
symbol are labeled with ε.

start := i

q := q0

while (i  n) {

q := �(q, input[i])

i := i + 1

}

if (q 2 F) return accept

else return fail

Now the question is how to obtain the table � from a regular expression.

2 NFA

The first step is to convert the regular expression into a nondeterministic finite automaton. An NFA differs
from a DFA in that each state can transition to zero or more other states on each input symbol, and a state
can also transition to others without reading a symbol. In the diagram representation, multiple exiting
edges can be labeled with the same symbol. Edges corresponding to not reading a symbol are labeled with
".

For example, the following is an NFA:

ε

ε

a

b

bc

a

b

b

c

Given an input stream, the NFA accepts if there is any way to reach a final state. That is, it has angelic
nondeterminism. We imagine there is an angel or oracle telling it which transitions to take. If the machine
above receives the input “aba”, it can reach a final state by choosing the upper "-transition, and staying
within the top three states. Therefore the machine accepts this input. It does not accept “ac”, however,
because there is no way to reach a final state while reading that input. (Can you write a regular expression
that describes exactly the strings that this NFA accepts?)

3 RE to NFA

We show how to translate a regular expression to an equivalent NFA by induction on the structure of the
regular expression. That is, given that we know how to convert the subexpressions of a regular expression,
we show how to use the NFAs produced by those translations to produce the NFA for the full expression.

In each case, the result of translating a regular expression will be an NFA with a single accept state,
which we represent with the following diagram:

2

Given an input stream, the NFA accepts if there is any way to reach a final state. That is, it has angelic
nondeterminism. We imagine there is an angel or oracle telling it which transitions to take.

Can you write a regular expression that describes exactly the strings that this NFA accepts?

11

Regex to NFA

Translation works by induction on the structure of a regular expression. That is, we translate an
expression by translating its subexpressions. Here, [[R]] means translation:Let us write [[R]] to mean the translation of regular expression R to an NFA that accepts exactly the

language of R. We define it as follows:

[["]]

ε

[[a]]

a

[[R1R2]]
[[R1]] [[R2]]

ε

[[R1|R2]]

[[R1]]

[[R2]]

ε

ε ε

ε

[[R⇤]]

[[R]] ε

By working bottom up, we can use these translations to construct an NFA for any regular expression.
For example, the odd number regular expression above, (0|1)⇤1, translates to the following NFA, which
clearly accepts the same strings. (The states in this diagram are labeled with names A–G for later use).

A

B C

D E

F G

0

1

ε

ε

ε

ε
1

ε

4 NFA to DFA

Although an NFA can do anything a DFA can, the reverse is also true. We can convert an arbitrary NFA
into a DFA (though the DFA may in general be exponentially larger than the NFA). The intuition is that we
make a DFA that simulates all possible executions of the NFA. At any given point in the input stream, the
NFA could be in some set of states. For each set of states the NFA could be in during its execution, we create
a state in the DFA. There is even in general a state ; in the DFA, to describe the case in which no NFA state
is reachable using the input seen up to a certain point.

3

12

Regex to NFA Example

The regular expression from before, (0|1)∗1, becomes the following NFA:

Let us write [[R]] to mean the translation of regular expression R to an NFA that accepts exactly the
language of R. We define it as follows:

[["]]

ε

[[a]]

a

[[R1R2]]
[[R1]] [[R2]]

ε

[[R1|R2]]

[[R1]]

[[R2]]

ε

ε ε

ε

[[R⇤]]

[[R]] ε

By working bottom up, we can use these translations to construct an NFA for any regular expression.
For example, the odd number regular expression above, (0|1)⇤1, translates to the following NFA, which
clearly accepts the same strings. (The states in this diagram are labeled with names A–G for later use).

A

B C

D E

F G

0

1

ε

ε

ε

ε
1

ε

4 NFA to DFA

Although an NFA can do anything a DFA can, the reverse is also true. We can convert an arbitrary NFA
into a DFA (though the DFA may in general be exponentially larger than the NFA). The intuition is that we
make a DFA that simulates all possible executions of the NFA. At any given point in the input stream, the
NFA could be in some set of states. For each set of states the NFA could be in during its execution, we create
a state in the DFA. There is even in general a state ; in the DFA, to describe the case in which no NFA state
is reachable using the input seen up to a certain point.

3

13

NFA to DFA

• NFAs and DFAs are equivalent (for every NFA, there is a DFA that can express the same language,
and vice versa).

• We can convert an arbitrary NFA into a DFA (though the DFA may in general be exponentially larger
than the NFA).

• The intuition is that we make a DFA that simulates all possible executions of the NFA.

• At any given point in the input stream, the NFA could be in some set of states. For each set of states
the NFA could be in during its execution, we create a state in the DFA.

14

NFA to DFA

• The ε− closure of a state q is the set of all states reachable from q using zero or more
ε− transitions .

• The ε− closure of a state F = {F,A,B,D}
• The initial state of the DFA is the ε− closure of the start state of the NFA

• More-or-less, you keep computing the closure and compressing states

Since " transitions can be taken at any time, it is useful to have the concept of the "-closure of a state q.
It is the set of all states reachable from q using zero or more "-transitions. Similarly, we can can take the
"-closure of a set of states by finding all states reachable from any state in the set using only "-transitions.

For example, in the odd-number NFA above, the "-closure of F is the set "-closure(()F) = {F, A, B, D}.
The "-closure of {E, G} is "-closure(E) ["-closure(G) = {E, F, A, B, D, G}.

Now let us discover which set of states are reachable in this NFA and construct the corresponding DFA.
The initial state of the DFA is the "-closure of the start state of the NFA: that is, "-closure(F) = {F, A, B, D}.

From that set of states we can take a transition on either 0 or 1. A transition on 0 can only happen from
state B to state C, so the DFA state reached is "-closure(C) = {C, F, A, B, D}. From either of these two
DFA states, we can transition on 1 to reach states E and G, so the final DFA state is "-closure({E, G}) =
{E, F, A, B, D, G}. The full DFA looks as follows:

FABD

CFABD

EFABDG

0

1
0 1

0

1

5 DFA minimization

In general the DFA generated by this procedure may have more states than necessary. John Hopcroft
showed that it is possible to minimize a DFA by merging states. Let us write q1 6⇡ q2 if merging states q1 and
q2 would change the language accepted by the DFA; in this case we say that q1 and q2 are distinguishable.

Clearly, two states are distinguishable if one of them is final and one of them is non-final. We can express
this idea as the following reasoning rule:

q1 2 F q2 62 F

q1 6⇡ q2
(Rule 1)

Two states are also distinguishable if following the the same symbol from each of them leads to distin-
guishable states:

q01 = �(q1, x) q02 = �(q2, x) q01 6⇡ q02
q1 6⇡ q2

(Rule 2)

If we can use these two rules to infer that two states are distinguishable, they must be distinguishable.
Conversely, if we can’t infer that two states are distinguishable by these rules, then merging the states will
not change which strings the DFA accepts.

Algorithmically, we keep track of whether each pair of states qi and qj are distinguishable, starting from
the supposition that they are not distinguishable. We mark all final/non-final pairs distinguishable, by
Rule 1. We then apply Rule 2. We follow similarly-labeled edges backward from all distinguishable states
to identify additional pairs of states that are distinguishable. Eventually no more distinguishable pairs can
be identified.

For the odd-number DFA, the result is as shown in the following table:

FABD CFABD

EFABDG

CFABD

≉ ≉

By Rule 1, states FABD and CFABD must both be distinguishable from EFABDG, as indicated by the 6⇡
in the table. Rule 2 cannot be applied to either of these pairs of distinguishable states, so we are done. Since
FABD and CFABD were not distinguishable, they can be merged, giving us exactly the 2-state DFA shown
at the beginning of the notes.

4

15

Last Slide

• Next lecture: Return to Perl:

• Context, objects, scripting as glue

16

