CS5142 Scripting Languages
Fall 2013

Regular Expressions

Acknowledgment

These slides are based on slides and lecture notes of Clark Barrett, Robert Grimm, and Ross
Tate.

Syntax and Semantics

Syntax refers to the structure of the language, i.e. what sequences of characters are well-formed
programs.

e Formal specification of syntax requires a set of rules
e These are often specified using grammars
Semantics denotes meaning:
e Given a well-formed program, what does it mean?
e Meaning may depend on context
This lecture only covers syntax. Semantic analysis is covered in the compilers course.

We now look at grammars in more detail.

Grammars

A grammar G is atuple (>, N, S, 0), where:

e /V is a set of non-terminal symbols
e S € N is adistinguished non-terminal: the root or start symbol

e). is a set of terminal symbols, also called the alphabet. We require >. to be disjoint from /V (i.e.
YN N = 0.

e 0 is a set of rewrite rules (productions) of the form:

ABC... - XYZ...

where A, B, C, D, X, Y, Z are terminals and non-terminals.
Any sequence consisting of terminals and non-terminals is called a string.

The language defined by a grammar is the set of strings containing only terminal symbols that can be
generated by applying the rewriting rules starting from .S.

Grammars

Consider the following grammar G-
e N={S XY}
e 5=5
e > ={a,b,c}

e 0 consists of the following rules:
-5 —=b
-5 — XbY
- X —a
- X —aX
-Y —c
-Y —-Yc

Some sample derivations:
e S—b
e S — XbY — abY — abc
e S — XbY — aXbY — aaXbY — aaabY — aaabc

The Chomsky hierarchy

e Regular grammars (Type 3)

— All productions have a single non-terminal on the left and a terminal and optionally a non-terminal
on the right

— Non-terminals on the right side of rules must either always preceed terminals or always follow
terminals

— Recognizable by finite state automaton

e Context-free grammars (Type 2)
— All productions have a single non-terminal on the left
— Right side of productions can be any string

— Recognizable by non-deterministic pushdown automaton

e Context-sensitive grammars (Type 1)
— Each production is of the form c A5 — a3,
— Ais a non-terminal, and «, (3, 7y are arbitrary strings («v and 5 may be empty, but not)

— Recognizable by linear bounded automaton

e Unrestricted grammars (Type 0)
— No restrictions

— Recognizable by turing machine

Regular expressions

An alternate way of describing a regular language over an alphabet 3. is with regular expressions.
We say that a regular expression /X denotes the language [[R]] (recall that a language is a set of strings).
Regular expressions over alphabet >_:
e ¢ denotes ()
e acharacter x, where = € 3, denotes {x }
e (sequencing) a sequence of two regular expressions 125 denotes {3 | € [R], 8 € [S]}
e (alternation) R|S denotes [R] U [5]
e (Kleene star) ¥ denotes the set of strings which are concatenations of zero or more strings from | 2]
e parentheses are used for grouping
o R\ =¢|R
e RT = RR*

Regular grammar example

A grammar for floating point numbers:

Float — Digits | Digits. Digits
Digits — Digit | Digit Digits
Digit — 0]1]2|3|4/5/6/7|8/9

A regular expression for floating point numbers:

(0[1]213145(6]7]8[9)* (.(0[1|2[3|45[6]7]8[9))"

The same thing in PERL:

[0-9]+(\.[0-9]+) 2

or

\Nd+ (\.\d+) ?

Deterministic Finite State Automaton

A deterministic finite automaton M is a tuple (Q), X2, 0, qo, '), where:

e () is afinites set of states

e). is a finite set of input symbols, also called the alphabet.
e 0 is a transition function (0 : () X > — ()

e (o is ainitial state (¢ € Q)

e F'is a set of accept states (F' C ()

Deterministic Finite State Automaton

A DFA can be drawn as a labeled graph in which states are nodes, the initial state ¢ is indicated by an

incoming edge from outside, other edges are labeled with the corresponding input symbol, and final states
inf" are marked by nodes with double circles.

For example, consider the following DFA, which accepts only odd numbers expressed in binary,
corresponding to the regular expression (0[1)*1:

\ ° 1
> 0| 1

do | 4o | 41
0 d1 | 4o | 41

The transition function 0 can be described as a table. This hints at how you might implement the DFA.

How do you get the 0 from a regex?

10

Non-deterministic Finite State Automaton

An NFA differs from a DFA in that each state can transition to zero or more other states on each input
symbol, can also transition to others without reading a symbol. Edges corresponding to not reading a

symbol are labeled with e.

Given an input stream, the NFA accepts if there is any way to reach a final state. That is, it has angelic
nondeterminism. We imagine there is an angel or oracle telling it which transitions to take.

Can you write a regular expression that describes exactly the strings that this NFA accepts?

11

Regex to NFA

Translation works by induction on the structure of a regular expression. That is, we translate an
expression by translating its subexpressions. Here, [[R]] means translation:

[€]

o]

[Rs]

[R41]|R2]

12

Regex to NFA Example

The regular expression from before, (0[1)*1, becomes the following NFA:

13

NFA to DFA

e NFAs and DFAs are equivalent (for every NFA, there is a DFA that can express the same language,
and vice versa).

e We can convert an arbitrary NFA into a DFA (though the DFA may in general be exponentially larger
than the NFA).

e The intuition is that we make a DFA that simulates all possible executions of the NFA.

e At any given point in the input stream, the NFA could be in some set of states. For each set of states
the NFA could be in during its execution, we create a state in the DFA.

14

NFA to DFA

e The ¢ — closure of a state ¢ is the set of all states reachable from ¢ using zero or more
e — transitions .

e The ¢ — closureofastate F' = {F, A, B, D}
e The initial state of the DFA is the ¢ — closure of the start state of the NFA

e More-or-less, you keep computing the closure and compressing states

EFABDG

15

Last Slide

e Next lecture: Return to Perl:

e Context, objects, scripting as glue

16

