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Announcements 

Breakfast pickup and presentations posted to website 

Reviews: start today! 
•  Only review one paper but please read them all 
•  Please submit by CMS in the future 

Homework #1 
•  Will go out next Tuesday 
•  Due 2 weeks later  
•  Topic: OpenFlow programming 



Overview 

Host (last time) 
•  Network discovery and bootstrapping 
•  Resource allocation and interface to applications 

Data plane (next time) 
•  Streaming algorithms and switch fabric 
•  Forward, !lter, buffer, schedule, mark, monitor, … 

Control plane (today) 
•  Distributed algorithms for computing paths 
•  Disseminating the addresses of end hosts 



Data, Control, and Management Planes 

Data Control Management 

Time-
scale 

Packet (ns) 
Event 

 (10 ms to sec) 
Human  

(min to hours) 

Tasks 

Forwarding, 
buffering, 
!ltering, 

scheduling 

Routing, 
signaling 

Analysis, 
con!guration 

Location Line-card 
hardware Router software Humans or scripts 



Routing vs. Forwarding 

Routing: control plane 
§  Computing paths the packets will follow 
§  Routers talking amongst themselves 
§  Individual router creating a forwarding table 

Forwarding: data plane 
§  Directing a data packet to an outgoing link 
§  Individual router using a forwarding table 
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Routing Protocols 

What does the protocol compute? 
§  Spanning tree, shortest path, local policy, arbitrary end-

to-end paths? 

What algorithm does the protocol run? 
§  Spanning-tree construction, distance vector, link-state 

routing, path-vector routing, source routing, end-to-
end signaling 

How do routers learn end-host locations? 
§  Learning/#ooding, injecting into the routing protocol, 

dissemination using a different protocol, and directory 
server 



What Does the Protocol Compute? 



Different Ways to Represent Paths 

Static Model 
§  The outcome of routing computations 
§  Not how the (distributed) computations are performed 

Trade-offs 
§  State required to represent the paths 
§  Efficiency of the resulting paths 
§  Ability to support multiple paths 
§  Complexity of computing paths 
§  Which nodes control the computation 

Different Settings 
§  LAN, intradomain, interdomain 

 



Spanning Tree 

A tree that connects every node 
§  Single path between each pair of nodes 
§  No loops, so supports broadcast easily 

Disadvantages 
§  Paths can sometimes be long 
§  Some links unused! 



Shortest Paths 

Shortest path(s) between each pair of nodes 
§  Separate shortest-path tree rooted at each node 
§  Minimum hop count (or minimum sum of weights) 

Disadvantages 
§  All nodes must agree on the link metrics 
§  Multipath routing is limited (e.g., Equal Cost Multipath) 



Local Policy at Each Hop 

Locally best path 
§  Each node picks the path it likes best  
§  … from among the paths selected by its neighbors 

Disadvantages 
§  More complicated to con!gure and model 
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End-to-End Path Selection 

End-to-end path selection 
§  Each node picks its own end to end paths 
§  … independent of what other paths other nodes use 

Disadvantages 
§  More state and complexity in the nodes 
§  Hop-by-hop destination-based forwarding is not enough 



How to Compute Paths? 



Spanning Tree Algorithm 

Elect a root 
§  Select switch with the smallest identi!er and form a tree 

Algorithm 
§  Repeatedly talk to neighbors 
– “I think node Y is the root” 
– “My distance from Y is d” 

§  Update state based on neighbors 
– Smaller id as the root 
– Smaller distance d+1 

§  Disable interfaces not on path 

Primarily used in Ethernet-based LANs 

root 

One hop 

Three hops 



Spanning Tree Example: Switch #4 

Switch #4 thinks it is the root 
§  Sends (4, 0, 4) message to 2 and 7 

Switch #4 hears from #2 
§  Receives (2, 0, 2) message from 2 
§  … and thinks that #2 is the root 
§  And realizes it is just one hop away 

Switch #4 hears from #7 
§  Receives (2, 1, 7) from 7 
§  And realizes this is a longer path 
§  So, prefers its own one-hop path 
§  And removes 4-7 link from the tree 
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Shortest-Path Problem  

Compute: path costs to all nodes 
§  From a given source u to all other nodes 
§  Cost of the path through each outgoing link 
§  Next hop along the least-cost path to s 
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Link State: Dijkstra’s Algorithm 

S = {u}  
for all nodes v  
   if (v is adjacent to u) 
      D(v) = c(u,v)  
   else D(v) = ∞  
 

add w with smallest D(w) to S 
update D(v) for all adjacent v: 
    D(v) = min{D(v), D(w) + c(w,v)}  
until all nodes are in S  
 

•  Flood the topology information to all nodes 
•  Each node computes shortest paths to other nodes 

Initialization Loop 

Used in OSPF and IS-IS 



Link-State Routing Example 
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Link-State Routing Example (continued) 
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Link State: Shortest-Path Tree 

Shortest-path tree from u Forwarding table at u 
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Distance Vector: Bellman-Ford Algorithm 

De!ne distances at each node x 
§   dx(y) = cost of least-cost path from x to y 

Update distances based on neighbors 
§   dx(y) = min {c(x,v) + dv(y)} over all neighbors v 
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Used in RIP and EIGRP 



Distance Vector: Count to In!nity 

Link cost changes: 
•  Good news travels fast  

•  Bad news travels slow: “count 
to in!nity” problem! 
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Path-Vector Routing 

Extension of distance-vector routing 
§  Support #exible routing policies 
§  Avoid count-to-in!nity problem 

Key idea: advertise the entire path 
§  Distance vector: send distance metric per dest d 
§  Path vector: send the entire path for each dest d 
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data traffic data traffic 

Used in BGP 



Path-Vector: Faster Loop Detection 

Node can easily detect a loop 
§  Look for its own node identi!er in the path 
§  E.g., node 1 sees itself in the path “3, 2, 1” 

Node can simply discard paths with loops 
§  E.g., node 1 simply discards the advertisement 
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Path-Vector: Flexible Policies 

Each node can apply local policies 
§  Path selection: Which path to use? 
§  Path export: Which paths to advertise? 

Examples 
§  Node 2 may prefer the path “2, 3, 1” over “2, 1” 
§  Node 1 may not let node 3 hear the path “1, 2” 

2 3 

1 

2 3 

1 



End-to-End Signaling 

Establish end-to-end path in advance 
§  Learn the topology (as in link-state routing) 
§  End host or router computes and signals a path 

Routers supports virtual circuits 
§  Signaling: install entry for each circuit at each hop 
§  Forwarding: look up the circuit id in the table 
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Used in MPLS with RSVP 



Source Routing 

Similar to end-to-end signaling 
§  But the data packet carries the hops in the path 
§  … rather than the routers storing big tables 

End-host control 
§  Tell the end host the topology  
§  Let the end host select the end-to-end path 

Variations of source routing 
§  Strict: specify every hop 
§  Loose: specify intermediate points 

 

Used in IP source routing (but almost always disabled) 



Learning Where the Hosts Are 



Building a forwarding table 
§  Computing paths between network elements 

§  … and !guring out where the end-hosts are 

§  … to map a destination address to an outgoing link 

How to !nd the hosts? 
§  Learning/#ooding  

§  Injecting into routing protocol 

§  Dissemination via different protocol 

§  Directory service 

 

 

Finding the Hosts 



Learning and Flooding 

When a frame arrives 
§  Inspect the source address 
§  Associate address with 

the incoming interface 

When the frame has an 
unfamiliar destination 
§  Forward out all interfaces 
§  … except for the one where 

the frame arrived 
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Used in Ethernet LANs 



Inject into Routing Protocol 

Treat the end host (or subnet) as a node 
§  And disseminate in the routing protocol 
§  E.g., #ood information about where addresses attach 
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Disseminate With Another Protocol 

Distribute using another protocol 
§  One router learns the route 
§  … and shares the information with other routers 

 

learn a route to d 
(e.g., via BGP) 

disseminate 
route to other 

routers 
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used in backbone 
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Directory Service 

Contact a service to learn the location 
§  Lookup the end-host or subnet address 
§  … and learn the label to put on the packet 
§  … to get the traffic to the right egress point 
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Encapsulate packet to send to egress e. 
Used in some 
data centers  



Conclusion 

Routing is challenging 
§  Distributed computation 
§  Challenges with scalability and dynamics 

Many different solutions for different environments 
§  Ethernet LAN: spanning tree, MAC learning, #ooding 
§  Enterprise: link-state, inject subnet addresses 

§  Backbone: link-state inside, path-vector routing with 
neighboring domains, and iBGP dissemination 

§  Data centers: many different solutions, still in #ux 
– E.g., link-state routing or multiple spanning trees 
– E.g., directory service, inject subnet 



 
“Design Philosophy of the DARPA 

Internet Protocols” 
(ACM SIGCOMM, 1988) 

David Clark 



Design Goals 

Primary goal 
§  Effective technique for multiplexed utilization of 

existing interconnected networks (e.g., ARPAnet, packet 
radio) 

Important goals 
§  Survivability in the face of failure 
§  Multiple types of communication service 
§  Wide variety of network technologies 

Less important goals 
§  Distributed management of resources 
§  Cost effectiveness 
§  Host attachment with low level of effort 
§  Accountability of resources 

 



Consequences of the Goals 

Effective multiplexed utilization of existing networks 
§  Packet switching, not circuit switching 

Continued communication despite network failures 
§  Routers don’t store state about ongoing transfers 
§  End hosts provide key communication services 

Support for multiple types of communication service 
§  Multiple transport protocols (e.g., TCP and UDP) 

Accommodation of a variety of different networks 
§  Simple, best-effort packet delivery service 
§  Packets may be lost, corrupted, or delivered out of order 

Distributed management of network resources 
§  Multiple institutions managing the network 
§  Intradomain and interdomain routing protocols 



Questions 

What if we started with different goals? 
§  Network management 
§  Less concern about backwards compatibility 
§  More concern about security 

Can we address new challenges 
§  Management, security, privacy, sensor nets, … 
§  Without sacri!cing the other goals? 
§  Without a major change to the architecture? 
 



 
“End-to-End Routing  

Behavior in the Internet” 
(ACM SIGCOMM, 1996; ToN, 1997) 

Vern Paxson 



Measurement With Traceroute 

Traceroute tool to measure the forwarding path 
§  Send packets with TTL=1, 2, 3… 
§  Record the source of the “time exceeded” message 

Useful, but introduces many challenges 
§  Path changes 
§  Non-participating nodes 
§  Inaccurate, two-way measurements 
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Questions 

Why can’t we measure the Internet more directly? 
§  What can we do about it? 

Right division of labor between host and network? 
§  For path selection 
§  For network monitoring 

How do we !x these routing problems? 
§  In a decentralized, federated network 
§  How to incentivize better network management 

 



Backup Slides on Paxson Paper 



Paxson Study: Forwarding Loops 

Forwarding loop 
§  Packet returns to same router multiple times 

May cause traceroute to show a loop 
§  If loop lasted long enough 
§  So many packets traverse the loopy path 

Traceroute may reveal false loops 
§  Path change that leads to a longer path 
§  Causing later probe packets to hit same nodes 

Heuristic solution 
§  Require traceroute to return same path 3 times 



Paxson Study: Causes of Loops 

Transient vs. persistent 
§  Transient: routing-protocol convergence 
§  Persistent: likely con!guration problem 

Challenges 
§  Appropriate time boundary between the two? 
§  What about #aky equipment going up and down? 
§  Determining the cause of persistent loops? 

Anecdote on recent study of persistent loops 
§  Provider has static route for customer pre!x 
§  Customer has default route to the provider 



Paxson Study: Path Fluttering 

Rapid changes between paths 
§  Multiple paths between a pair of hosts 
§  Load balancing policies inside the network 

Packet-based load balancing 
§  Round-robin or random 
§  Multiple paths for packets in a single #ow 

Flow-based load balancing 
§  Hash of some !elds in the packet header 
§  E.g., IP addresses, port numbers, etc. 
§  To keep packets in a #ow on one path 



Paxson Study: Routing Stability 

Route prevalence 
§  Likelihood of observing a particular route 
§  Relatively easy to measure with sound sampling 
§  Poisson arrivals see time averages (PASTA) 
§  Most host pairs have a dominant route 

Route persistence 
§  How long a route endures before a change 
§  Much harder to measure through active probes 
§  Look for cases of multiple observations 
§  Typical host pair has path persistence of a week 



Paxson Study: Route Asymmetry 

Hot-potato routing Other causes 
§  Asymmetric link weights in 

intradomain routing 
§  Cold-potato routing, where AS 

requests traffic enter at particular 
place 

 
Consequences 

§  Lots of asymmetry 
§  One-way delay is not necessarily 

half of the round-trip time 
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multiple 
peering 
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Provider A 
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Early-exit  
routing 


