
http://www.flickr.com/photos/rofi/2097239111/!

Nate Foster
Cornell University
Spring 2013
Based on lecture notes by Jennifer Rexford and Michael Freedman

CS 6114/5114
Network Programming
Languages

Administrivia

Instructor
 Nate Foster
	
 jnfoster@cs.cornell.edu

Background
 PhD @ Penn
 Postdoc @ Princeton

Office hours
 Tuesdays 3-4pm
 Upson 4137

Additional office hours
 By request

Schedule

Lectures
 Tuesdays & Thursdays
 Hollister Hall 306
 8:40am-9:55am

Expectations
 Attend!
 Read papers
 Contribute to discussions

Breakfast
 I will cover a number of breakfasts
 Volunteers can sign up on Piazza

Coursework and Grades

Participation (25%)
Review one paper per class, due at the start of class
Two ~10 minute presentations during the semester
Contribute to discussions

Problem sets (3 x 15% each)
 During !rst half of the semester
 Mostly programming assignments

Course project (40%)
 Teams of 2-3
 Intermediate checkpoints
 Final report and presentation

Late Policy

Reviews
•  Four “misses” with no questions asked

Problem sets
•  10% late penalty per day until I start grading
•  After that, no credit

Save your code…
•  Submit early and often
•  Use version control (svn, git, etc.)
•  CMS is your friend

If you have a major emergency (e.g., medical, family) please
talk to me as soon as possible.

Online Resources

Website
 www.cs.cornell.edu/Courses/cs5114
 Readings
 Lectures

CMS
 cms.csuglab.cornell.edu
 Problem sets
 Grades

Piazza
 piazza.com
 Announcements
 Scheduling
 Discussion

Academic Integrity

Strictly enforced

Violations are easier to detect than you might think

Unpleasant and painful for everyone involved

To avoid pressure, start problem sets early

A simple guideline: provide attribution for everything

you obtain from another source

Let me know if you run into difficulty

Networks: An Exciting Time

The Internet
•  A research experiment that escaped the lab…
•  Became the global communications infrastructure

An ever-growing reach
•  Today: 1.7+ billion users
•  Tomorrow: more users, computers, devices

Constant innovation
•  Appications: Web, social networks, peer-to-peer, …
•  Links: !ber optics, WiFi, cellular, …

Networks Are Transforming Everything

Business
•  E-commerce, advertising, cloud computing, ...

Relationships
•  E-mail, instant messaging, Facebook, virtual worlds

Legal system
•  Interstate commerce? National boundaries?

Government
•  E-voting and e-government
•  Censorship and wiretapping

Warfare
•  Drones and cyber-warfare

But, What is Networking?

A Plethora of Protocol Acronyms?

BGP
ARP

HTTP

DNS

PPP

OSPF

DHCP

TCP

UDP

SMTP

FTP

SSH

MAC

IP RIP

NAT

CIDR

VLAN VTP

NNTP

POP

IMAP

RED
ECN

SACK

SNMP

TFTP

TLS

WAP
SIP IPX

STUN

RTP

RTSP

RTCP

PIM

IGMP ICMP

MPLS

LDP

HIP

LISP

LLDP

BFD

A Heap of Header Formats?

TCP/IP Header Formats in Lego

A Bunch of Boxes?

Router Switch

Firewall
NAT

Load
balancer

DHCP
server

DNS
server

Bridge

Hub

Repeater

Base
station

Proxy WAN
Accelerator

Gateway
Intrusion
Detection

System

Packet
shaper

Route
Re"ector

Label
Switched

Router Scrubber

Packet
sniffer

Deep
Packet

Inspection

A Ton of Tools?

traceroute
nslookup

ping

ipcon$g
rancid

whois

tcpdump

wireshark NDT

iperf

dummynet

syslog

trat
snort

bro

arpwatch

mrtg

nmap

ntop

dig

wget

net-snmp

What Do Our Peers Say?

“You networking people are very curious. You really love
your artifacts.”

“I fell asleep at the start of the semester when the IP

header was on the screen, and woke up at the end of
the semester with the TCP header on the screen.”

“Networking is all details and no principles.”

“ARP, DHCP, ICMP, IGMP, IP, SONET, TCP, UDP, FML”

Is networking “just the (arti)facts”?

An Application Domain?

Application Domain for Theory?"

Algorithms and data structures
Control theory

Queuing theory
Optimization theory

Game theory

Formal methods
Information theory

Cryptography
Graph theory

Application Domain for Systems?

Distributed systems
Operating systems
Computer architecture
Programming languages
Software engineering
…

An Exercise in Entrepreneurship?

Identify a need or desirable capability
•  Whether previously known or not

Invent a new feature or system that provides it

Determine how it !ts in the existing network

Build and/or evaluate your solution

Pitch or $ell the problem and solution to others
•  Whether to investors or a program committee

Bask in glory, or lick your wounds

What Peers in Other Fields Say?

“Networking papers are strange. They have a lot of text.”

“What are the top ten classic problems in networking? I would
like to solve one of them and submit a paper to SIGCOMM.”

 After hearing that we don't have such a list: “Then how do you
consider networking a discipline?”

“So, these networking research people today aren't doing theory,
and yet they aren't the people who brought us the Internet.
What exactly are they doing?”

“Networking is an opportunistic discipline.”

Is networking a problem domain or a scholarly discipline?

What Do We Teach
Networking Students?

How Practitioners Learn Networking

Certi$cation courses
•  How to con!gure speci!c pieces of equipment

“On the job” training, AKA “trial by !re”

How Colleges Teach Networking

Undergraduates: how the Internet works
Graduates: read the 20 “best” papers
Few general principles, little “hands-on” experience

“There is a tendency in our !eld to believe that everything
we currently use is a paragon of engineering, rather than a
snapshot of our understanding at the time. We build great
myths of spin about how what we have done is the only way
to do it to the point that our universities now teach the $aws
to students (and professors and textbook authors) who don't
know better.”

— John Day

Now That I’ve Bummed You Out…

Or, why should you stay in this class?

Why is Networking Cool?

Tangible, direct relationship to reality
•  Can measure/build things (we do “love our artifacts”)
•  Can truly effect far-reaching change in the real world

Inherently interdisciplinary
•  Well-motivated problems + rigorous techniques
•  Interplay with policy, economics, and social science

Widely-read papers
•  Many of the most cited papers in CS are in networking
•  Congestion control, distributed hash tables, resource

reservation, self-similar traffic, multimedia protocols,…
•  Three of top-ten CS authors (Shenker, Jacobson, Floyd)

Why is Networking Cool? (Continued)

Young, relatively immature $eld
•  Great if you like to make order out of chaos
•  Tremendous intellectual progress still needed
•  You can help shape the !eld!

De$ning the problem is a big part of the challenge
•  Recognizing a need, formulating a well-de!ned problem
•  … is at least as important as solving the problem…

Lots of platforms for building your ideas
•  Programmability: OpenFlow, Click, NetFPGA,…
•  Routing software: Quagga, XORP, Bird,…
•  Testbeds: Mininet, Emulab, PlanetLab, Orbit, GENI, …
•  Measurements: RouteViews, traceroute, Internet2, …

But That Doesn’t Say What
Networking Really Is

Or, what will this course be about?

One Take on De!ning Networking

How to
•  Design and operate components and protocols
•  That may solve well-de!ned engineering problems
•  That may can be used and combined in many ways

De$nition and placement of function
•  What to do, and where to do it

The “division of labor”
•  Between the host, network, and management systems
•  Across multiple concurrent protocols and mechanisms
•  What makes a good division of labor?

What Excites Me about Networking

Freedom to introduce new functionality

Designing algorithms, protocols, and data structures
that offer better performance, robustness, security, …

The art of system design for cleaner abstractions and
easier management…

The development of programming languages and
veri!cation tools that implement these abstractions
and provide assurance

What Is This Course About?

Classic Work
•  What problems were being solved?
•  What were the underlying assumptions and solutions?

Modern Work
•  Datacenters: the engine driving the tech boom
– New settings means new problems and challenges

•  Software-De!ned Networking
– Eliminate legacy artifacts; provides freedom to program

the network directly

Focus on languages used to express network algorithms
and new tools for verifying correctness

Course Structure

I: Basics

II: Software-De!ned Networks

III: Routing

IV: Veri!cation

V: Advanced Topics

Internet Basics

Host-Network Division of Labor

Packet switching
•  Divide messages into a sequence of packets
•  Headers with source and destination address

Best-effort delivery
•  Packets may be lost
•  Packets may be corrupted
•  Packets may be delivered out of order

network

Host-Network Interface: Why Packets?

Traffic is bursty
•  Logging in to remote machines
•  Exchanging e-mail messages

Don’t want to waste bandwidth
•  No traffic exchanged during idle periods

Allows multiplexing
•  Different transfers share access to same links

Packets can be delivered by most anything
•  RFC 1149: IP Datagrams over Avian Carriers

Why Best-Effort?

Means never having to say you’re sorry…
•  Don’t reserve bandwidth and memory
•  Don’t do error detection and correction
•  Don’t remember from one packet to next

Easier to survive failures
•  Transient disruptions are okay during failover

Can run on nearly any link technology
•  Greater interoperability and evolution

36

Intermediate Transport Layer

But applications want efficient, accurate
transfer of data in order, in a timely fashion
•  Let end hosts handle all of that!
•  This is the classic “end-to-end argument”

Transport layer can optionally…
•  Retransmit lost packets
•  Put packets back in order
•  Detect and handle corrupted packets
•  Avoid overloading the receiver
•  <insert your favorite requirement here>

IP Suite: End Hosts vs. Routers

HTTP

TCP

IP

Ethernet
interface

HTTP

TCP

IP

Ethernet
interface

IP IP

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

host host

router router

HTTP message

TCP segment

IP packet IP packet IP packet

The “Narrow Waist” of the Internet

UDP TCP

Data Link

Physical

Applications

The Hourglass Model

Waist

The narrow waist facilitates interoperability

FTP HTTP TFTP NV

TCP UDP

IP

NET1 NET2 NETn …

Layer Encapsulation

40

Get index.html

Connection ID

Source/Destination

Link Address

User A User B

Next Few Classes: Review

Host
•  Network discovery and bootstrapping
•  Resource allocation and interface to applications

Control plane
•  Distributed algorithms for computing paths
•  Disseminating the addresses of end hosts

Data plane
•  Streaming algorithms and switch fabric
•  Forward, !lter, buffer, schedule, mark, monitor, …

How to Read a Paper

Keshav’s Three-Pass Approach: Step 1

A ten-minute scan to get the general idea
•  Title, abstract, and introduction
•  Section and subsection titles
•  Conclusion
•  Bibliography

What to learn: the $ve C’s
•  Category: What type of paper is it?
•  Context: What body of work does it relate to?
•  Correctness: Do the assumptions seem valid?
•  Contributions: What are the main research contributions?
•  Clarity: Is the paper well-written?

Decide whether to read further…

Keshav’s Three-Pass Approach: Step 2

A more careful, one-hour reading
•  Read with greater care, but ignore details like proofs
•  Figures, diagrams, and illustrations
•  Mark relevant references for later reading

Grasp the content of the paper
•  Be able to summarize the main thrust to others
•  Identify whether you can (or should) fully understand

Decide whether to…
•  Abandon reading the paper in greater depth
•  Read background material before proceeding further
•  Persevere and continue on to the third pass

Kesha’s Three-Pass Approach: Step 3

Virtual re-implementation of the work
•  Making the same assumptions, recreate the work
•  Identify the paper’s innovations and its failings
•  Identify and challenge every assumption
•  Think how you would present the ideas yourself
•  Jot down ideas for future work

When should you read this carefully?
•  Reviewing for a conference or journal
•  Giving colleagues feedback on a paper
•  Understanding papers closely related to your research
•  Deeply understanding a classic paper in the !eld

http://dl.acm.org/citation.cfm?id=1273458

Other Tips for Reading Papers

Read at the right level for your needs
•  “Work smarter, not harder”

Read at the right time of day
•  When you are fresh, not sleepy

Read in the right place
•  Where you are not distracted, and have enough time

Read actively
•  With a purpose (what is your goal?)
•  With a pen or computer to take notes

Read critically
•  Think, question, challenge, critique, …

How to Write a Review

Four Sections
1.  Summary
2.  Paper strengths
3.  Paper weaknesses
4.  Detailed comments

Summary
•  1-2 points: What problem?
•  1-2 points: Core novel ideas or technical contributions
•  3-5 points: Summarize approach, mechanisms, !ndings

Strength/Weaknesses: 2-4 points each

Detailed comments: Longer exposition. Be constructive.
Imagine a conversation: what would you tell the authors?

