Translate the following expressions into English.

Let \mathbb{P} equal Prop, the type of propositions. Let $P:$ Form $\rightarrow \mathbb{P}$ be the propositional functions on Formulas. Recall that SAT(S) for an infinite set of formulas S means that they are all simultaneously satisfiable using an assignment (valuation) of Var.

1. $\forall X: \operatorname{Form} . \forall v: \operatorname{Var}(X) \rightarrow \mathbb{B} . \operatorname{Boolean}(\operatorname{bval}(X), \operatorname{SubForm}(X))$.
2. $\forall X$: Form. $(\operatorname{TAUT}(X) \Rightarrow \exists T: T a b l e a u(F X)$.
$(\operatorname{Completed}(T) \Rightarrow \operatorname{Closed}(T)))$.
3. $\forall e: \mathbb{N} \rightarrow$ Form. $\forall n: \mathbb{N} . \operatorname{SAT}(\{e(1), \ldots, e(n)\}) \Rightarrow \exists v: \operatorname{Var} \rightarrow \mathbb{B}$. $\forall i: \mathbb{N}$. $\operatorname{bval}(e(i), v)=t$ in \mathbb{B}.
4. $\forall P:$ Form $\rightarrow \mathbb{P} .(\forall X:$ Form.
$((\forall Y: \operatorname{SubForm}(X) \cdot P(Y))) \Rightarrow P(X)) \Rightarrow \forall X:$ Form. $P(X)$.
5. $\forall X$: Form. $\operatorname{PROV}(X) \Leftrightarrow(\exists T: \operatorname{Tableau}(F X) . C l o s e d(T))$.
6. \exists Decide $:$ Form \rightarrow B. $\forall X: \operatorname{Form} .(\operatorname{Decide}(X)=\operatorname{tin} \mathbb{B}) \Leftrightarrow \operatorname{PROV}(X)$.

Here are acceptable answers.

1. For every formula X and assignment v to the variables of X , the (recursive) function bval, having inputs X and v , as a function of v is a Boolean valuation of the subformulas of X .

Note, you need to recall that the recursive function we defined in class, bval, is a function of X and v , i.e. $\operatorname{bval}(\mathrm{X}, \mathrm{v})$ produces a Boolean. So $\operatorname{bval}(\mathrm{X})$ is a function of one argument as Smullyan requires.
$\forall X:$ Form. $\forall v: \operatorname{Var}(X) \rightarrow \mathbb{B}$. Boolean $(\operatorname{bval}(X), \operatorname{SubForm}(X))$.
2. For every formula X, if it is a tautology, then we can find a tableau T for FX which is completed and closed (or if completed is closed).

```
\forallX:Form. ( TAUT (X) => \existsT:Tableau(FX).
    (Completed(T) & Closed(T))).
```

3. Given an enumeration e of propositional formulas such that every enumerated initial segment up to n is satisfiable, there is a valuation v of all the propositional variables that satisfies every formula enumerated.

$$
\begin{aligned}
\forall e: \mathbb{N} & \rightarrow F \operatorname{Form} . \forall n: \mathbb{N} . \operatorname{SAT}(\{e(1), \ldots, e(n)\}) \Rightarrow \exists v: \operatorname{Var} \rightarrow \mathbb{B} . \\
& \forall i: \mathbb{N} . \operatorname{bval}(e(i), v)=t \operatorname{in} \mathbb{B} .
\end{aligned}
$$

4. Given any propositional function P on formulas, if for any formula X assuming that $\mathrm{P}(\mathrm{Y})$ holds for every subformula Y of X implies that P holds for X , then we know that P is true for all formulas.
```
P:Form}->\mathbb{P}.(\forallX:Form
((\forallY:SubForm(X).P(Y))) =>P(X)) => \forallX:Form. P(X).
```

5. A propositional formula X is provable iff there is a closed tableau T for FX.
$\forall X:$ Form. $P R O V(X) \Leftrightarrow(\exists T: T a b l e a u(F X) . C l o s e d(T))$.
6. There is a function Decide from Formulas to Booleans that has the value true on any formula X if and only if X is provable.
\exists Decide $:$ Form \rightarrow B. $\forall X:$ Form. $(\operatorname{Decide}(X)=\operatorname{tin} \mathbb{B}) \Leftrightarrow \operatorname{PROV}(X)$.
