CHAPTER 2

PROP'OSITIONA‘L INTUITIONISTIC LOGIC

PROOF THEORY

§ 1. Beth tableaus

In this section we present a modified version of a proof system due

originally to Beth. It s based on [2, § 145], but at the suggestion of

R. Smullyan, we have introduced signed formulas and single trees in

place of the unsigned formulas and dual trees of Beth.

By a signed formula we mean TX or FX where X is a formula. If § isa

set of signed formulas and H is a single signed formula, we will write

Su {H} simply as {8, H} or sometimes S, H,

First we state the reduction rules, then we describe their use; S is any .
set (possibly empty) of signed formulas, and X and ¥ are any formulas: . .

TA S T(XAY) FA S,F(XAY)
S,TX,TY . S,FX|S,FY '
Tv S,TXvY) Fv S,FXvY)
S,TX[S,TY 'S, FX,FY
T~ S T(~X) Fo S, F(~X)
S, FX S5 TX
T> S, T(X>Y) = S, F(X>Y)
S, FX|S, TY Sr. TX, FY

In rules F~ and F> above, Sy means {TX | TXeS).

FA_ ;
™Al Ta
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Remark 1.1: Sis a set, and hence (S, TXX} is the same as (S, 7X, Tx),
Thus duplication and elimination rules are not necessary.

If Uis a set of signed formulas, we say one of the above rules, call it rule
R, applies to U if by appropriate choice of S, X and ¥ the collection of
signed formulas above the line in rule R becomes U.

By an application of rule R to the set U we mean the replacement of
Uby U, (or by U, and U, ifRis FA, Tv or T>) where Uis the set
of formulas above the line in rule R (after suitable substitution for S,
Xand Y) and U, (or U,,U,) is the set of formulas below. This assumes
R applies to U. Otherwise the result is again U. For example, by applying
rule F> to the set {TX, FY, F(Z> W)} we may get the set {TX, TZ, FW}).
By applying rule T'v to the set {TX, FY,T(ZVv W)} we may get the two
sets {TX, FY, TZ} and {TX, FY, Tw}.

By a configuration we mean a finite collection {S1, S1...., 8.} of sets
of signed formulas.

By an application of the rule R to the configuration {8 S25..., 8.}
we mean the replacement of this configuration with a new one which js
like the first except for containing instead of some S the result (or results)
of applying rule R to . b S

By a tablecu we mean a finite sequence of configurations %, €,..., G,
in which each configuration except the first is the result of applying one
of the above rules to the preceding configuration.

A set S of signed formulas is closed if it contains both T'X and FX for
some formula X. A configuration {S,, S,,..., S,} is closed if each S in it
is closed. A tableau €,, ¥,,..., %, is closed if some €, in it is closed, ~

By a tableau for a set S of signed formulas we mean a tableau %
€2 €, in which €, is {S}). A finite set of signed formulas § is
inconsistent if some tableau for S is closed. Otherwise S is consistent.
X is a theorem if {FXY} is inconsistent, and a closed tableau for {FX} is
called a proof of X. If X is a theorem we write F X,

We will show in the next few sections the correctness and completeness
of the above system relative to the semantics of ch. 1, - . - - - -

Examples of proofs in this system may be found in § 5.

The corresponding classical tableau system i3 Jike the above, but in
rules F~ and F>, Syis replaced by S (see [20)). The interpretations of
the classical and intuitionistic systems are different.
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In the classical system TX and FX mean X is true and X is false
sspectively. The rules may be read: if the situation above the line is the
ase, the situation below the line is also (or one of them is, if the rule is
isjunctive: FA, Tv, T=). Thus TX means the same as X, and FX
1eans ~X. Classically the signs T and F are dispensable. Proof is a
:futation procedure. Suppose X is not true (begin a tableau with FX).
‘onclude that some formula must be both true and not true (a closed
onfiguration is reached). Since this can not happen, X is true.

In the intuitionistic case TX is to mean X is known to be true (X is
roven). FX is to mean X is not known to be truc (X has not been
roved). The rules are to be read: if the situation above the line is the
1se, then the situation below the line is possible, i.e. compatible with
ur present knowledge (if the rule is disjunctive, one of the sitvations
clow the line must be possible). For example consider rule Fo. If we
ave not proved X, it is possible to prove X’ without proving ¥, for
“this were not possible, a proof of Y would be ‘inherent’ in a proof of X,
nd this fact would constitute a proof of X> Y. But we have Sy below
1¢ line in this rule and not S because in proving X we might inadvertently
erify some additional previously unproven formula (some FZe S might
ecome JZ). Similarly for F~. The proof procedure is again by refuta-
on. Suppose X is not proven (begin a tableau with FX). Conclude that
is possible that some formula is both proven and not proven. Since this
; impossible, X is proven.

We have presented this system in a very formal fashion because it
rakes talking about it easier. In practice there are many simplifications
thich will become obvious in any attempt to use the method. Also,
roofs may be written in a tree form. We find the resulting simplified
ystem the easiest to use of all the intuitionistic proof systems, except in
sme cases, the system resulting by the same simplifications from the
losely related onc presented in ch. 6 §4. A full treatment of the corre-
ponding classical tableau system, with practical simplifications, may be
sund in [20}.

2. Correctness of Beth tableaus

definition 2.1: We call a set of signed formulas
{TXyy ..., TX,, FY,, ..., FY.}
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realizable if there is some model {¥, &, F) and some 'e¥ such that
reX,,..,rex, rgv,..,r§Y, Wesaythat I' realizes the set.

If {8, S5,..., S,} is a configuration, we call jt realizable if some S;
in it is realizable.

Theorem 2.2; Let €,, 6,,..., €, be a tableau. If €, is realizable, so is
Cisre

Proof: We have cight cases, depending on the rule whose application
produced €., from €.

Case(1): €, is {..., {ST(XvY)},..} and €,y is {..., {S.TX},
{S,TY},...}. Since %, is realizable, some element of it is realizable. If
that element is not {S,T(X v Y)}, the same clement of €, , is realizable.
If that element is {S,T(X v Y)}, then for some model (¥, &, F) and some
red, I realizes {S,T(Xv Y)}. That is, I realizes S and I'k(X v Y). Then
TEX or T'EY, so cither I realizes {S,7X} or {S,TY}. In either case
%, is realizable.

Case (2): C, is {..., {S,F(~X)},...} and €y, is {...,{Sr.TX},...}.
%, is realizable, and it suffices to consider the case that {S,F(~ X)} is the
realizable element. Then there is a model (¥, &, F) and a 'e¥ such
that I realizes S and I'¥ ~X. Since T'¥ ~ X, for some '*e¥, I'*EX.
But clearly, if I' realizes S, I'® realizes Sy (by theorem 1.4.4). Hence I'*
realizes {S7,TX} and ¥,,, is realizable.

The other six cases are similar.

Corollary 2.3: The system of Beth tableaus is correct, that is, if kX,
X is valid.

Proof: We show the contrapositive. Suppose X is not valid. Then there
is a model (¥, &, k) and a I'e¥ such that I' ¥ X. In other words {FX} |
is realizable. But a proof of X would be a closed tableau €, €,,..., €, ’
in which €, is {{FX}}. But %, is realizable, hence each ¥, is realizable.
But obviously a realizable configuration cannot be closed. Hence FX.

§ 3. Hintikka collections
In classical logic a sct S of signed formulas is sometimes called down-
ward saturated, or a Hintikka set, if

TXAYeS = TXeS and TYeS,
FXvYeS = FXeS and FYeS,
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TXvYeS = TXeS or TYeS,
FXAYeS = FXeS or FYeS,
T~XeS = FXeS,
TX>YeS = FXeS or TYeS,
F~XeS = TXeS,
FX>YeS = TXeS and FYeS.

Remark 3.1: The names Hintikka set and downward saturated set were
given by Smullyan (20). Hintikka, their originator, called them model
sets.

Hintikka showed that any consistent downward saturated set could be
included in a set for which the above properties hold with = replaced by
<. From this follows the completeness of certain classical tableau
systems. This approach is thoroughly developed by Smullyan in [20]).

We now introduce a corresponding notion in intuitionistic logic,
which we call a Hintikka collection. While its intujtive appeal may not
be as immediate as in the classical case, its usefulness is as great.

Definition 3.2: Let & bea collection of consistent sets of signed formulas.
We call ¥ a Hintikka collection if for any I'e ¥

TXAYel = TXell and TYerl,

FXvYel = FXel' and FYerl,
TXv Yel = TXel or TYerl,
FXAYel = FXeI' or FYerl,
T~Xell = FXel,

TX>Yel = FXel or TYel,

"F~Xel = forsome 4e¥,I'tc4 and TXed,
" FX>Yel = forsome 4e€¥,I'rc4,TXed FYed.

Definition 3.3: Let ¥ be a Hintikka collection. We call (¥, &,F) a
model for 9 if
(1). (%, R, k) is a model,
). IySd=Tr4%4,
(3). TXel =TkX,
FXelr=rjX.

Theorem 3.4: There is a model for any Hintikka collection.
Proof: Let ¢ be a Hintikka collection. Define % by: I'#4 if M'r<4.
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If A is atomic, let 'k A if TAel, and extend k to produce a model
{9, R, k). To show property (3) is a straightforward induction on the
degree of .Y. We give one case as illustration. Supposc .Y is ~ ¥ and the
result is known for Y. Then

T~Yel = (V4e9)(Fysd4=>T ~Yed)
= (Vde¥)(Frc 4=FYed)
= (VAeQ)(TRA=4}Y)
= IkE~Y,

and

F~Yel = (34e9)(I'r<dand TYe4)
= (JdeY)(FT'R4 and 4FY)
> Ff~Y.

It follows from this theorem that to show the completeness of Beth
tableaus we need only show the following: If J X, then there is a
Hintikka collection ¥ such that for some I'e¥9, FXerl,

§ 4. Completeness of Beth tableaus

Let S be a set of signed formulas. By %(S) we mean the collection of
all signed subformulas of formulas in §. If S is finite, &(S) is finite.

Let S be a finite, consistent set of signed formulas. We define a
reduced set for § (there may be many) as follows:

Let S, be S. Having defined S, a finite consistent set of signed formulas,
suppose one of the following Beth reduction rules applies to §,: TA,
Fa, Tv, Fv, T~ or To. Choose one which applies, say FA.
Then S, is {U, FXA Y}. This is consistent, so clearly either {U, FXA Y,
FX} or {U, FXAY, FY} is consistent. Let S,,, be {U, FXA Y, FX} if
consistent, otherwise let S,,, be {U, FXA Y, FY}. Similarly if TA
applies and was chosen, then S, is {U, TX A Y}. Since this is consistent,
{U,TXA Y, TX, TY} is consistent. Let this be S,4,. In this way we
define a sequence S, S|, S, ... . This sequence has the property S,S 8, +,.
Further, cach S, is finitc and consistent. Since each S,S .7 (S), there arc
only a finite number of different possiblc S,. Consequently there must be
a member of the sequence, say S,, such that the application of any onc
of the rules (cxcept F~ or F>) produces S, again. Call such an §, a
reduced set of S, and denote it by S”. Clearly any finite, consistent sct of
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signed formulas has a finite, consistent reduced set. Morcover, if §’ is
a reduced set, it has the following suggestive properties:

TXAYeS = TXeS and TYeS,

FXvYeS = FXeS' and FYeS',
TXvYeS = TXeS' or TYeS,
FXAYeS = FXeS' or FYeS,
T~XeS' = FXeS§,

TX>YeS = FXeS' or TYeS,

S’ is consistent .

Now, given any finite, consistent set of signed formulas S, we form the
collection of associated sets as follows:

If F~XeS, {Sr,TX} is an associated set. I R

If FX> YeS, {Sy,TX,FY} is an associated set. B
Let s/(S) be the collection of all associated sets of S. &/ (S) is finite,
since Ues/(S) implies US ¥ (S) and F(S) is finite. &/(S) has the
following properties: il S is consistent, any associated set is consistent
and

F~XeS = forsome Ued(S) SrcU, TXeU,
FX > YeS = forsome Ue(S) Src U, TXeU, FYeU.

Now we proceed with the proof of completeness.

Suppose ¥ ,X. Then {FX} is consistent. Extend it to its reduced set Sg.
Form <7(So). Let the elements of &/(S,) be Uy, Un,..., Usr Let S; be
the reduced set of U, ..., S, be the reduced set of U,. Thus, we have the

sequence So, iy S2,---» S

Next form &7 (S)). Call its elements U, 41, Uns2100s U, Let S, be the
reduced set of U,,, and so on. Thus, we have the sequence Sor Sireees Smy
S,y 411-++» S NOW We repeat the process with S5, and so on.

In this way we form a sequence S, Sy, Sy, ... Since cach S, 7(S),
there are only finitely many possible different S;. Thus we must reach a
point S, of the sequence such that any continuation repeats on ‘earlier
member.

Let Z be the collection {So, S, ..., Si}. It is easy to sce that Zisa
Hintikka collection. But FXe Spe%. Thus we have shown:

Thearem 4.1: Beth tableaus are complete.
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Remark 4.2: This proof also establishes that propositional intuitionistic
logic is decidable. For, if we follow the above procedure beginning with
FX, after a finite number of steps we will have either a closed tableau for
{FX} or a counter-model for X. Moreover, the number of steps may be

bounded in terms of the degree of X, "' .t

The completeness proof presented here is in essence the original proof
of Kripke [13]. For a different tableau completeness proof see ch. 5§ 6,
where it is given for first order logic. For a completeness proof of an
axiom system see ch. 5§ 10, where it also is given for a first order system.
The work in ch. ! § 6 provides an algebraic completeness proof, since
the Lindenbaum algebra of intuitionistic logic is easily shown to be a
pseudo-boolean algebra. Sce [16).

§ 5. Examples

In this section, so that the rcader may gain familiarity with the fore-
going, we present a few thcorems and non-theorems of intuitionistic
propositional logic, together with their proofs or counter-models.

We show

(1). frdv ~4,

). b~ "'(‘4 v ~A)9

(). Fi~~A24,

4. F(AvB)>~(~AA~B),

(5). ¥y~~(AvB)>(~~Av~~B)
For the general principle connecting (1) and (2) see ch. 4§ 8.

(). ¥iAv~A.
A countcr example for this is the following:

9 ={r, 4)
TRr, red4, 4%4.

4F A is the F relation for atomic formulas, and E is extended to all for-
mulas as usual. We may schematically represent this mode! by

r

4kA
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We claim I'fAv~4, Suppose not. If I'kAv ~4, cither 'k 4 or
TE~A. But T A. If 'k~ A then since TRd4, 4F A. But 4k 4, hence
THEAv ~4,
(2)- "|~ ~(AV ~A). 1
A tableau proof for this is the following, where the reasons for the steps
are obvious:
{F~~(4v~a))},
{{T~(4v~a)},
{T~(Av~a),F(dv~4),
{T~(Av ~A),FA, F ~ A4}},
(T ~(A v ~a4), TA}},
{{F(4v~a),T4}},
{{FA, F ~ A, TA)}.

(3). Fi~~doA.
The mode! of example (1) has the property that 'k~ ~ 4 but ' 4,
@. h(AvB)s~(~AA~B), '
The following is a proof:

{{F((Av B) >~ (~ 4 A ~BY),
{{T(Av B),F ~(~4 A ~B)),
{T(4v B), T(~4aa~B)},
{{T(4vB),T~4,T~B),
{{T(4v B),Fa, T ~ B},

{{T(4 v B), F4, FB}},

{{T4, F4, FB), (TB, F 4, FB}).

() Fi~v~(AvB)s(~vmdy ~ ~B),
A counter example is the following:

g=(r, 4,9,
rar, Aa4, 0zq,
rad, raq

4k A4, QFBis the k relation for atomic formulas, and k is extended as
usual. We may schematically represent this model by

r

N
4k 4 QB

Ve e s, .




Key, Qacts v Ay
Tovce Xeacks bLeack
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Now 4k 4,50 4k Av B. Likewise QF A v B. It follows that 'k~ ~ (4 v B)
But if Tk~ ~Av ~~B, either Fb~~A4 or 'k~ ~B. If Thavnd, it
would follow that Qk 4, If 'k~ ~ B, it would follow that 4k B, Thus
FTl~~Av~~B

Y A’o.g‘ the oolel cequice
) Ay~ PR ‘s
7 \¢

{A3



