CS 486: Applied Logic:

Handout on Blocked Tableau and Sequent Systems

Block tableau rules "spelled out" (based on Smullyan 20)

We consider sets S of formulas, and isolate the one we're interested in.

left	right	
α S, $T(A \wedge B)$	$S, F(A \land B)$ β	
S, T(A), T(B)	S, F(A)	
	S, F(B)	
β S, $T(A \lor B)$	$S, F(A \lor B)$ α	
S, T(A)	S, F(A), F(B)	
S, T(B)		
β S, $T(A \supset B)$	$S, F(A \supset B)$ α	
S, F(A)	S, T(A), F(B)	
S, T(B)		
α S, T(\sim A)	$S, F(\sim A)$ α	
S, F(A)	S, T(A)	
* S, T(A), F(A)		

Gentzen Systems: multi-conclusioned sequent rules (Smullyan 105/106)

Hypothesis and conclusion consist of sets of formulas (H, G).

	left	right	
$\wedge L$	$H, \mathbf{A} \wedge \mathbf{B} \vdash G$	$H \vdash G, \mathbf{A} \land \mathbf{B}$	$\wedge R$
	$H, \mathbf{A}, \mathbf{B} \vdash G$	$H \vdash G, \mathbf{A}$	
		$H \vdash G, \mathbf{B}$	
\vee L	$H, \mathbf{A} \vee \mathbf{B} \vdash G$	$H \vdash G, \mathbf{A} \vee \mathbf{B}$	$\vee R$
	$H, \mathbf{A} \vdash G$	$H \vdash G, \mathbf{A}, \mathbf{B}$	
	$H, \mathbf{B} \vdash G$		
⊃L	$H, \mathbf{A} \supset \mathbf{B} \vdash G$	$H \vdash G, \mathbf{A} \supset \mathbf{B}$	\supset R
	$H \vdash G, \mathbf{A}$	$H, \mathbf{A} \vdash G, \mathbf{B}$	
	$H, \mathbf{B} \vdash G$		
\sim L	$H, \sim A \vdash G$	$H \vdash G, \sim A$	\sim R
	$H \vdash G, \mathbf{A}$	$H, \mathbf{A} \vdash G$	
axiom	$H, \mathbf{A} \vdash G, \mathbf{A}$		

Refinement Logic: Single-conclusioned sequent rules

Refinement Logic as implemented in NUPRL uses a slightly different notation for logical connectives. Instead of sets of formulas we consider lists (H, H'). Sequents only have a single formula G as conclusion.

We use a slightly different notation for logical connectives. Implication is now \Rightarrow (instead of \supset), negation is \neg (instead of \sim). Negation $\neg A$ is viewed as abbreviation for $A \Rightarrow \mathsf{f}$

	left	right		
andL	$H, \mathbf{A} \wedge \mathbf{B}, H' \vdash \mathbf{G}$	$H \vdash A \land B$	andR	
	$H, \mathbf{A}, \mathbf{B}, H' \vdash G$	$H \vdash \mathbf{A}$		
		$H \vdash \mathbf{B}$		
orL i	$H, \mathbf{A} \vee \mathbf{B}, H' \vdash \mathbf{G}$	$H \vdash A \lor B$	orR1	
	$H, \mathbf{A}, H' \vdash G$	$H \vdash \mathbf{A}$		
	$H, \frac{\mathbf{B}}{\mathbf{B}}, H' \vdash \mathbf{G}$			
		$H \vdash A \lor B$	orR2	
		$H \vdash \mathbf{B}$		
$\mathtt{impL}\ i$	$H, A \Rightarrow B, H' \vdash G$	$H \vdash A \Rightarrow B$	impR	
	$H, \mathbf{A} \Rightarrow \mathbf{B}, H' \vdash \mathbf{A}$	$H, \mathbf{A} \vdash \mathbf{B}$		
	$H, H', \mathbf{B} \vdash G$			
\mathtt{notL} i	$H, \neg A, H' \vdash G$	$H \vdash \neg A$	notR	
	$H, \neg A, H' \vdash A$	$H, \mathbf{A} \vdash f$		
falseL~i	$H, f, H' \vdash G$			
$\verb"axiom" i$	$H, \mathbf{A}, H' \vdash \mathbf{A}$			
Special Rules				
$\verb magic A$	$H \vdash G$	$H \vdash G$	$\mathtt{cut}\ A$	
	$H, A \vee \neg A \vdash G$	$H \vdash A$		
		$H, A \vdash G$		

In the computerized version, all left rules must provide an index i of the hypothesis to indicate the formula to which the rule shall be applied. In magic and cut the formula A has to be provided.