Questions

(I use \supset for implication.)

- (1) Prove that $\Box \varphi \land \Box (\varphi \supset \psi) \supset \Box \psi$ is valid in all frames.
- (2) In class, we showed that if F is a reflexive frame, then for all formulas φ, □φ ⊃ φ is valid in F. Prove the converse: if for all formulas φ, □φ ⊃ φ is valid in a frame F, then F is a reflexive frame. **Hint**: show that if F is not reflexive, then □φ ⊃ φ is not valid in F.

This result says that the formula schema $\Box \varphi \supset \varphi$ corresponds to reflexive frames, since F is reflexive if and only if for all φ , $\Box \varphi \supset \varphi$ is valid in F.

- (3) An equivalence relation on W is a relation R that is:
 - reflexive: for all $x \in W$, $(x, x) \in R$;
 - symmetric: for all $x, y \in W$, $(x, y) \in R$ implies that $(y, x) \in R$;
 - transitive: for all $x, y, z \in W$, if $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$.

A frame $F = \langle W, R \rangle$ is an equivalence frame if R is an equivalence relation on W. Show that the following formula schemas correspond to equivalence frames:

$$\Box \varphi \supset \varphi$$
$$\Box \varphi \supset \Box \Box \varphi$$
$$\neg \Box \varphi \supset \Box \neg \Box \varphi$$