1 May 2024 Cryptography I: OneTime Pads and One-Way Functions

Shannon and Statistically Secure Encryption
An encryption scheme consists of 3 pants, each executed by a (possibly randomized) poly-tive algorithm

Key generation: $G e n()$ outputs $k \in K$

- Encryption Enc: $K \times g M^{\text {message e set }} e^{\text {cipherectuts }}$

Enc (k, m) is the encryption of message m unis key k.

- Decryption Dec: $K \times C \rightarrow M$
$D_{e c}\left(k_{c}\right)$ is the decryption of ciphertext c wing key k.
$\operatorname{Dec}(k, \cdot)$ inverts Ene (k, \cdot) for every k.

$$
\operatorname{Dec}\left(k, E_{n c}(k, m)\right)=m \quad \forall_{k}, m
$$

Shannon security: $\forall m_{0}, m_{1} \in 9 M \quad \forall c \in C$

$$
\operatorname{Pr}_{k \leftarrow G_{\text {en }}}\left[E_{n e}\left(k, m_{0}\right)=c\right]=\operatorname{Pr}_{k \in \operatorname{Gen}}\left[E_{n c}\left(k, m_{1}\right)=c\right]
$$

An attaker who has complete knowledge of Gen, Enc, Dee, and intercepts C but has no knowledge of k learns nothing about m.

A onk-time paced is an encryption scheame with these characteristics.

1. $|m|=|C|=|K|$ - all 3 sets same size
2. \forall key $k \in \alpha, E_{n c}\left(k_{j}\right)$ and $\operatorname{Dec}\left(k_{j}\right)$ are inverse bijections between M and P.
3. \forall merage $m \in M$, Enc $(0, m)$ is a bijection between \mathbb{X} and E.
4 Gen samples uniformly from K

Ex 1. $\quad m=\{0,1\}^{n}=\{=b$

$$
\operatorname{Erc}(k, m)=\underset{m \oplus k=\operatorname{bitwise} \times \operatorname{Dec}(k, m)}{\operatorname{lor}}
$$

Ex. $2 . \quad M=\neq C=\mathbb{Z} /(N) \leftharpoonup$ integers modulo N

$$
\operatorname{Enc}(k, m)=m+k \quad \operatorname{Dec}(k, m)=m-k
$$

Problem with the one-time pad: requires on huge secret key.

Theorem. (Shannon) Any incryption scheme satisfying Shannon security must have $|K| \geqslant \mid m 1$.

Progress in cryptography with smaller (mon practical) key sizes needed new ideas: Security against computationally bounded attackers.
(Cannot gain any useful information from intercepted messages without running exponential-time algorithms.)

One-Way functions, A one-way function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is:

- Easy to compute: $f(x)$ computed by a (rand.) algorithm in poly $(|x|)$ time.
- Hard to invert: for any attacker using rand aboithm A that runs in poly time, if
- sample $x \in\{0,1\}^{n}$ at random
- send $f(x)$ to attacker © about wa to
- attacker computes $x^{\prime}=A\left(\left(O^{n}, f(x)\right)\right.$
then $\operatorname{fr}\left(f\left(x^{\prime}\right)=f(x)\right)$ is negligible.
"negligible" means $\ll \frac{1}{n^{c}}$
for every $c<\infty$
Ex 1. Multiplication.
input $X \in\{0,1\}^{n}$ is a pair (a, b)
of binary numbers >1.

$$
\begin{aligned}
& a, b \in\left\{2,3, \ldots, 2^{n / 2}-1\right\} \\
& f(x)=a \cdot b
\end{aligned}
$$

To invent f one mist solve integer factorization.
$2^{O\left(n^{1 / 3}\right)}$ on a classical computer.

