26 Apr 2024 Integer Programming and Linear Programming (§11.6 in book) Announcements Problem Set 9: released this morning due next Thurs 11:59 2) CIS Student Hiring (For Fall TA positions) cis-student-hiring. coecis. cornell. edu Applications due Mon., 4/29, 11:55pm. integers Integer Programming: $(values in \mathbb{Z})$ Given variables \mathcal{X}_{n} , \ldots , \mathcal{X}_{n} $i = 1, 2, \ldots, m$ $\vec{a}_{i}\cdot\vec{x} \leq b_{i}$ Constraints coefficient right-hand side vector of constraint i an integer selution $\vec{X} \in \mathbb{Z}^n$? Does there exist (1,1) $5x, \leq b$ $5_{N_1} \leq$ $-2x_{1}-2x_{2}^{5}$ 0,4 InFeasible Thteger program

Linear Programming: does $\{\overline{a}_{i}^{*}, \overline{x} \leq b_{i}^{*}: \overline{i} = j_{m}, m\}$ have a solution XER? Integer Prog NP- Complete (Later this lecture.) $\in \mathbb{P}^{n}$ Linear frog (C5)(6820)(various ORIE courses) VERTER LOVER Sp INTEGER PROG. G = (V,E) undir graphi VIX cover: SEV is called a "vertex cover" if every edge of G has at least one endpoint in S. Decision problem: Given (G K) is there a vtx ceres of size 5 K? Optimization problem. Given G what is the minimum size of a vertex cover? To reduce vertex over to integer prog.

we start by making variables
X, for each vertex vEV.
Intended interpretation: Xy=1 means VES
x = 0 means VES
Now write inequalities among JX, & siti
finding a set 5 which is a vertex cover of size <k equivalent="" is="" td="" to<=""></k>
cover of size <k equivalent="" is="" td="" to<=""></k>
Finding X that satisfics the inequalities.

 $\forall \mathbf{v}$ $x_{y} \leq 1$ -> χ_γ ≥0 Xy can only take volves foil $\forall e = (u, v)$ $\gamma \chi_{u} + \chi_{v} \ge 1$ edge e is covered $\rightarrow Z_{\chi} \times_{\chi} \leq K$ ISIEK FACT: { vectors $\vec{x} \in \mathbb{Z}^V$ softisfying the above? $\int_{x} \begin{cases} vertex cover sets S & size \leq k \end{cases}$ S= $\{v: x_v = 1\}$ Int. Prog. and Lin. Prog. (optimization version) optimization is NP-tland. optimization is solvable in pty time. Int. Prog. Lin. Prog A general strategy for designing approximation algorithms () write the problem as an integer program. 2) RELAX to a linear programi Same variables & constraints but the variables can take real values. (3) Solve the LP. (4) Output a "nearby" integer point.

Applying to	Vertex Cover.		
[VC - LP]	Mintrize		
. .		$x_u + x_v \ge 1$ $0 \le x_v \le 1$	Ve-lav)
What could a			
$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · ·	$\mathcal{X}_{\mathcal{N}} = \mathcal{X}_{\mathcal{W}} = \frac{1}{2}$	· · · · · · · ·
	W LA SOL	VER: OPT = (6 variables, e TH: min VC s	3. ach = $\frac{1}{2}$
LP round		. .	· · · · · · · · · · · · · · · · · · ·
$(1) \qquad \qquad$	Mal Fractiona	to obtain an) solution, X	· · · · · · · · · · · · · · · · · · ·

(2) Round Ti to integer Vector Y, $4 = \begin{cases} 1 & \text{if } x_v \ge \frac{1}{2} \\ 0 & \text{if } x_v < \frac{1}{2} \end{cases}$ • • • • • (3) Output $S = \{v \mid y_v = 1\}$,

CLAIM. 5 is always a vertex cover. Its size is always < 2. (opt VC size) Why vertex cover? $\forall e = (u,v)$ $X_{u} + X_{v} \ge 1$ At least one of Xu, Xv is $\frac{1}{2}$. => at least one of yu, yv = 1 $Size(S) = \sum_{v \in V} y_v$ $\leq Q \cdot \sum_{v \in V} \lambda_v$ 2. OPT (VC-LP) $\leq 2.0PT(VC-IP)$

								÷			÷					-						-		-																	-					-	
						•			•			•											•								•			•		•	•			•					•		
•	•	*	•	•	•	•	•	•	•	•	•	•	*	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	*	•	*	•	•	•	·	•	•	•	•	•	•	•	•	•	•	•
•	•	*	•	•	•	•	•	*	•	•	•	•	•	•	•	•	•	*	•	•	•	•	•	•	•	•	•	•	•	*	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•			•	•	•	•	•		•	•	•	•				•	•	•	•		•	•	•	•			•		•			•	•	•	•	•				•	•		•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	*	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	*	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	*	•	•	•	•	•	•	•	•	•	•	•	•	•
•				•	•	•			•	•					•	•	•		•	•	•			•			•		•					•	•		•			•					•	•	•
•	•	•		•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•		•	•	•	•	•		•	•		•	•	•	•	•	•
•	•	•	•	•	•	*	•		•	•	•	•		•	•	•	•	•		*	•	•	•	•	•	•	•	•	•	•	•		•	*	•	•	•	•	•	•		•	•		•	•	•
•		•					•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
				*																																						•			•		