26 Apr 2024 Integer Programming and
Linear Programming ( $\$ 11.6$ in book)

Announcements
(1) Problem Set 9 released this morning
due neat Thurs 11:59
(2) CIS Student Hiring (for Fall TA positions) cis-student-hiring. cuecis. cornell. educ Applications due Mon, 4/29, $\|_{1} 55 \mathrm{pm}$.

Integer Programming:
Given variables $x_{1}, \ldots, x_{n}$ (values in $\mathbb{Z}$ )
constants $\quad \overrightarrow{a_{i}} \cdot \vec{x} \leqslant b_{i} \quad i=1,2, \ldots, m$

$$
\begin{aligned}
& \hat{\tau}_{\text {coefficient, }} \text { vectorst-hand so de } \\
& \text { constraint } i
\end{aligned}
$$

Dies there exist an integer solution $\vec{x} \in \mathbb{Z}^{n}$ ?

$$
\begin{aligned}
& 5 x_{1} \leq 2 \\
& 5 x_{2} \leq 2 \\
& -2 x_{1}-2 x_{2} \leq-1
\end{aligned}
$$



Infeasible integer program:

Linear Programming does $\left\{\vec{a}_{i} \cdot \vec{x} \leqslant b_{i}: i=1, \ldots, m\right\}$ have a solution $\vec{x} \in \mathbb{R}^{n}$ ?

Integer Prog NP-Complete. (Later this lecture)
Linear frog $\in P$ (CS 6820 )
(various ORIE courses)

VERTEX COVER $\leqslant_{\rho}$ INTEGER PROG.

VIe cover: $G=(V, E)$ undir graph i
$S \subseteq V$ is called a vertex cover" if every edge of $G$ has ot least one endpoint in $S$.

Deciston problem: Given $(G, k)$ is there a $v$ ea ever of size $\leqslant k$ ?
Optimization problem: Given $G$ what is the minimum size of a vertex cover?

To reduce vertex caver to integer prog. we start by making variables $x_{v}$ for each vertex $v \in V$.

Intended interpretation: $x_{v}=1$ means $v \in S$
$x_{v}=0$ means $v \notin S$
Now write inequalities among $\left\{x_{v}\right\}$ st. finding a set $S$ which is a vertex cover of size $\leqslant k$ is equivalent to Finding $\vec{x}$ that statistics the inequalities.
$x_{v}$ can only $\longrightarrow x_{v} \geqslant 0 \quad x_{v} \leqslant 1 \quad \forall v$ $\begin{aligned} & \text { take values }\{01\} \\ & \text { edge e is } \\ & \text { covered }\end{aligned} \longrightarrow x_{u}+x_{v} \geqslant 1 \quad \forall e=(u, v)$

$$
|s| \leqslant k \quad \longrightarrow \sum_{v \in V} x_{v} \leqslant K
$$

FACT: $\underset{\vec{x}}{ }$ ) vectors $\vec{x} \in \mathbb{Z}^{V}$ satisfying the above $\}$
$\pm\{$ vertex cover sets $S$ of size $\leqslant k\}$

$$
S=\left\{v i x_{v}=1\right\}
$$

Int. Prog and Lin. Prog.
(optimization verston)
maximize $c \cdot x$

st. $a_{i} \cdot x \leqslant b_{i} \forall_{i}$ or $\quad$| $\operatorname{minimize}$ | $c \cdot x$ |
| :---: | :---: |
| st. | $a_{i} \cdot x \geqslant b_{i} \forall_{i}$ |

Int. Pros. optisieotion is NP-Hard.
Lh. ling optimization is solvable in pay time.
A general strategy for designing approximation algorithms:
(1) write the putbem as an integer program.
(2) RELAX to a linear program:
same variables \& constraints, but the variables can take real values.
(3) Solve the LP "nearby" integer point.

Applying to vertex cover

$$
\begin{aligned}
{[V C-L P] \quad \operatorname{minimize} } & \sum_{v \in V} x_{v} \\
\text { st, } & x_{u}+x_{v} \geqslant 1 \quad \forall e=(q, v) \\
& 0 \leqslant x_{v} \leqslant 1 \quad \forall v
\end{aligned}
$$

What could go wrong when we solve this?


$$
x_{u}=x_{v}=x_{w}=\frac{1}{2}
$$



LP SOLVER: OPT $=3$.
( 6 variables, each $=1 / 2$ )
TRuth: $\min V C$ size $=4$.

A poly-time 2 -approx to vertex caver by Li rounaling:
(1) Solve VC-LP to obtain an optimal fractional solution, $\vec{x}$
(2) Round $\vec{x}$ to integer vector $\vec{y}$,

$$
y_{v}=\left\{\begin{array}{lll}
1 & \text { if } & x_{v} \geqslant 1 / 2 \\
0 & \text { if } & x_{v}<1 / 2
\end{array}\right.
$$

(3) Output $S=\left\{v \mid y_{v}=13\right.$.

CLAIM. $S$ is always a vertex cover. Its size is always $\leqslant 2$ (opt VC size)

Why vertex cor?

$$
\forall e=(u, v) \quad x_{u}+x_{v} \geqslant 1
$$

At least one of $x_{u}, x_{v}$ is $\geqslant \frac{1}{2}$.
$\Longrightarrow$ at Least one of $y_{u} y_{v}=1$.

$$
\begin{aligned}
s_{z e}(S) & =\sum_{V \in V} y_{V} \\
& \leqslant 2 \cdot \sum_{V \in V} x_{V} \\
& =2 \cdot \text { OPT }(V C \cdot L P) \\
& \leqslant 2 \cdot \operatorname{OPT}(V C-I P)
\end{aligned}
$$

