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* Announcements

* What can Turing Machines compute ?



&Fan

* Turing Machines : a formal model of

"algorithms

thurch-TuringThesis .

Everything that can be computed by a

↑

physically - realizable model of computation
can be computed by Turing Machines.

So... what can Turing Machines compute ?



Decision Problems- Formal Languages
-

I
A set of strings.
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Decision ProblemsE Formal Languages

Ex
- 3SA

Decision Prob . Given a 3CNF C,
is there a satisfying
assignment - s .

t. Y (I) = T

Language. The set of all satisfiable

3CNF formulas 1 .
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A Language LCL
*

is a subset of strings
-

& = input alphabet

WLOs E=0, 13

Ex
Y is a 3CNF N

3SAT = &447 : 72 s
.

t
. Y(z) = + ]

↓
< . ) denotes string encoding of math object

Can assume objects of interest
are encoded as strings weR*.
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ExampleLanguages
4 is a SCNF

35AT = [ <4) : JE sit.
. Y (i) = T 5

PALINDROME = ES : S is a palindrome 3

ComplementLanguages
I = 2

*

L

--

PALINDROME = [
*

(PALINDROME = Es : ne3



ExampleLanguages
4 is a SCNF

35AT = [ <4) : JE sit.
. Y (i) = T 5

PALINDROME = ES : S is a palindrome 3

EMPTY-LANG = 0 = E E

ALL = &* Ev : w + 2
* 3I

ATL = EMPTY
-

EMPTY I ALL



ExampleLanguages
4 is a SCNF

35AT = [ <4) : JE sit.
. Y (i) = T 5

PALINDROME = ES : S is a palindrome 3

GOLDBACH COUNTEREXAMPLES I

1 > 2 is even 1

& O" : FP19 prime . n + P + q 3
Goldbach's Conjecture => GOLDBACH COUNTEREXAMPLES = O



Announcements
* Prelim 2 Graded

↳ Returned this evening

* HW8 Released TBAY

Le Due Thurs ,
25 Apr . 11 : 59 p

.
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Turing Machines rize languages.

A language L isRognizable(RE) if

there exists a TM M s . t
.

)= L .

-> Accept* O = weL

nee
*
-

M

-> => waL

I(m) = [ we =*: M accepts we



A language L is Recognizable(coRE) if

there exists a TM M s . t
.

M rejects W if) we L
-

Equivalently
LE coRE iff [ERE

(change the Accept and

Reject States (
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if it always halts.



Some languages are Didable (R).

A Turing Machine D is called a Decider
-

if it always halts.

-->

* &ep
+ => we L

D
we [

*
-
-> => waL

fr +E*, Running Don input W ends in either

O CAccept or Reject in fite steps.
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Some languages are Didable (R).

A language Lis didable if there exists

a decider D st
. I(D) = L

.

&* I L
.

Theorem L is decidable if and only if
- -z
L and- are recognizable.

↳R E LERE NRE



Theorem L is decidable if and only if
-

L and F are recognizable.

If. (E)) L is decidable => J decider D
-m

s . t
. I(D) = L ↓

Observe : A decider is a recognizer !

LERE? D accepts w if) . WEL

=> LERE

LEcoRE ? D rejects ~ if weL
=> L EcoRE

~



Theorem L is decidable if and only if
-

L and I are recognizable.

If . (E)

* L - RE => F machine M sit
. Macc

.

WEL weL

* It RE => F machine N sit.
. N rej w E WAL

We construct a multi-tape decider D

using M and N
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Decider D
.

On input -

-A COPY w to second tape
* In parallel
↳ Run Mon w on tape I
↳ Run N on won tape 2

* if either machine Accepts/Rejects , do the same.
L
Suppose
WEL -> M accepts w-

N does not reject w
.

J => Daccepts w
=

=> N rejects wSuppose
M does not accept w

3 => C) rejects w



where are we ?



O
NP -

Decidable in exponential time
PO (try all witnesses and verify)

I
Decidable in polynomial time



Decidable (R)O
time.

NP

O &
④ Decidable in flite



(RE)
Decidable (R)O

Recognizable

OM

④ I④

Recognizable



(RE)
Decidable (R)O N

Recognizable

O④ <

qReiR④

Claim There exist ecidable languages !
-



RE

O (RE)
Decidable (R)

O

O
Recognizable

KORENCORE
NP

O④
-Tere

Claim There exist Unrecognizable languages !!!
-

o

--



Key to Undecidability. Self-Reference
--

* Languages about Turing Machines !

I
property

= <[M) : M has some-property
1

( ↑
TM descriptions -> [

* property
of interest



TheDiagonal Language

DIAS : E<M) : M does Not accept <M) 3

TUs that do not accept

their own description

Theorem DIAG is undecidable !
-
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DIAS : E<M) : M does Not accept <M) 3
Pf . By contradiction. Suppose 7 D that

decides DIA4
.

Considerthe behavior of D running on <D) .

case
Suppose (D) e <(D) = DIA4 .

=> <D) +DIAG = D does Not accept <D)

=> (D) I(D)
.

Case contradiction !

Suppose (D) - <(D) = DIAG .

=> <D) #DIAG => D accepts (D)
=> <DY = ICC tradiction !


