15 Apr 2024 Universal Turing Machine
A multi-tape TM has:

- finite state set
- finite (possibly >1) number of
infinite tapes
(Input is always on first tape)
- Read/write head for each tape, capable of moving independently.
- Transition function

A single tape TM car simulate o multi-tare one.

\square

Simulating M with k tapes and tape alphabet Γ, we will use single age machine S with tape alphabet $\Gamma^{k} \times\{0,1\}^{k}$

Configuration: The state of a TM, the position of (each) read-wite head, and the contents of (each) tape, omitting the irpite sequence of blanks at the and of the tape. A finite amount of data, that completely describes the state of a computation.
S makes a left-to-right pass, memorizing (in its internal state) each symuld M is reading, then it gees night-to-left, implementing one step of M^{\prime} s transition rule by overwriting symbols and repositioning
simulated read-wrive heads.

Multi-tap $T M$ is the accepted way to quantify space / time complexity of argonithins.

Universal Turing Machine A machine U, that gets an input $M \# \infty$ where M describes another TM and x describes the input to M, and U simulates what happens when M processes input x.

Description of a Turing machine M :
(1) a sequence of O 's and I's starting with $0^{n} 10^{m} 10^{k} 10^{s} 10^{t} 10^{r} 10^{u} 101$

$$
\begin{array}{lll}
n=\# \text { states } & s=\text { start state } & \text { us endinarkar } \\
m=\# \text { tap symbols } & t=\text { accept } & v=\text { blank } \\
k=\# \text { ip symbols } & r=\text { reject } &
\end{array}
$$

(2) the description of the transition function. A sequence of $\{0,1\}$-strings, in a would be 1 for standardized formats

$$
\delta(\rho, c)=(q, b, L) \text { encoded as } 010101010
$$

Description of input x : sequence of $\left\{0,13\right.$-strings where suint) $x_{i} \in \Gamma=[n]$ is encoded as $O^{x_{i}} 1$.

The string $\quad x=\left(x_{1} x_{2} x_{3}, \ldots, x_{a}\right)$ is encoded as $0^{x_{1}} 10^{x_{2}} 1 \ldots 0^{x_{a}} 1$

Input to U is $M \neq x$ in input alphabet $\quad\{0,1, \#\}$.

To say d is a univ TM means:

- if M accepts x, U must accept $M \nVdash x$
- if M rejects x, U must reject $M * x$
- if M loops on X, U must Coop on $M \notin$.

How decs U work?
3 tapes: input tope (read only stores $M \nRightarrow x$) Working tape (stores configuration of M in the simulation
state tape (stores description of Mrs state in the Simulation)

