22 Mar Vertex Cover and Hamiltonian Cycle
Announcements about PSt 7 .
(1) Q1 early turn-in option.

Turn in \leqslant Tues Apo
\Rightarrow graded betire end of S_{ρ} Bork:
(2) Q2 has a 4820 and a 5820 version

This will be last homework before Prelim 2.
Prelim 2 nat cumulative: covers $C h, 5,7,8$.
(div-cong, flow, $N P$-complete problems)

DEFINITIONS.

1. NP is the class of decision puddems for which there exists a polynomial-time algorithm to verity a "yes" answer, given a suitable hint.
If Π is a problem, we say $T \in N P$ if there's an algorithm V with two inputs.
$V(x, y) \quad x$ denotes an instance of Π
y denotes or "hint"
or "Candidate solution"
(a) V runs in poly time in $\underbrace{|x|}_{\text {length of } x} \mid \underset{\text { length at } y}{|y|}$
(b) $\pi(x)=$ yes if and only if
$\exists y$ st $|y| \leqslant O($ poly $(|x|))$ and $V(x, y)=$ yes.

Eg 3 SAT.
$x=$ specification of verialles \& clauses
$y=$ specification of tate assignment
$V(x, y)=\begin{gathered}\text { alsoithm that cheeks } y \text { statistics } \\ \text { every clause specified in } x .\end{gathered}$ every clause specified in x.
$P \subseteq N P$ because $V(x, y)$ can ignore y and solve x in poly time.
$\rho \stackrel{?}{=} N P: \quad$ most believe $\rho \neq N P$.
2. Π is NP-Hard if any of the following equivalent statements hold.
Cod-tein (c a Every problem $\Pi^{\prime} \in N P$ satisfies $\Pi^{\prime} \leqslant_{p} \Pi$.
Theorem b. There exists an NP-Hard π^{\prime} st $\pi^{\prime} \leqslant_{\rho} \pi_{0}$ (c s.4810/4814) $C_{C} \quad 35 A T \leqslant T \pi$.
3. T is $N P$-Complete if $\Pi \in N P$ and is $N P$-hard. You can verify a solution of π in pols-time but cant find a solution unless $P=N P$.
"Prove some problem $A B C$ is NP-Couplete."
(1) Present a polytime verifier. (Show $A B C \in N P$.)
(2) Present a reduction from some other NP-hard philem, $x y z$, to $A B C$.
-(3) Slow reduction nuns in poly time.
(4) Reduction, applied to "yes" instance of $X Y Z$, yields "yes" instance of $A B C$.
(5) Same as step 4 , for "no" instances.
"gadgets woik."gadgets cannot be often accomplish as intended" successuilly used in ... unintended "ways":
step 5 by proving its. contrapositive

HAMILTONIAN CYCLE: input is a directed graph. Question: does the graph contain a simple cycle that visits all vertices? (cycle with no repeated vertices)
(1) Belongs to NP because a verifier given the graph, and a list of vertices in the cycle, checks that each vertex is on the cycle once and only sauce, and each edge of the cycle belongs to the graph.
(2) Recuse from something $N P$ - tabard

Textbook: $\quad 35 A T \leqslant \rho$ HAM CYCLE (Read it! It's instructive)
Today: VERTEX COVER \leqslant_{p} Han cycLE

Given undirected $G, k \in \mathbb{N}$.
Can we find $\leqslant k$ vertices in G such that each edge has at least one endpoint anoing the k vertices?

Will represent G as a HAM CYCLe input with 3 types of gadgets.

EDGE GADGET

$$
u{ }^{0}-0=
$$

VERTEX GADGET

u gadget
counter GADGEt

